
SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE NOTES (II)

MASTER IN ACTUARIAL SCIENCE



SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE 17

MASTER IN ACTUARIAL SCIENCE



𝑡𝑉 + 𝑃𝑡 − 𝑒𝑡 1 + 𝑖𝑡 = 𝑞 𝑥 +𝑡 𝑆𝑡+1 + 𝐸𝑡+1 + 𝑝 𝑥 +𝑡× 𝑡+1𝑉

⟺ 𝑡+1𝑉 =
𝑡𝑉 + 𝑃𝑡 − 𝑒𝑡 1 + 𝑖𝑡 − 𝑞 𝑥 +𝑡 𝑆𝑡+1 + 𝐸𝑡+1

𝑝 𝑥 +𝑡

Using this last equation, 𝑡+1𝑉 can be obtained from 𝑡𝑉.

More accurately the interest rate in year 𝑡, 𝑡 + 1 should be

denoted 𝑖 𝑡,𝑡+1 .

                  …         
𝑉𝑡

 

𝑃𝑡 − 𝑒𝑡
      

𝑉𝑡+1
  

𝑆𝑡+1 + 𝐸𝑡+1
           

  

0        …   t    𝑡 + 1         

x                             𝑥 + 𝑡           𝑥 + 𝑡 + 1 



DEATH STRAIN AT RISK (DSAR)

EXPECTED DEATH STRAIN (EDS)

ACTUAL DEATH STRAIN (ADS)



Def. 31: The policyholder may survive year 𝑡 + 1 or die in it. If the

policyholder has died in the year, the insurer must provide the extra amount

to increase the policy value to the death benefit payable, plus any related

expense; this extra amount required to increase the policy value to the death

benefit is called the Death Strain At Risk (DSAR), or the Sum at Risk or

the Net Amount at Risk, at time 𝑡 + 1. It is a random variable.

DSAR =  
0, if the life survives to 𝑡 + 1 (with probability 𝑝𝑥+𝑡)

𝑆𝑡+1 + 𝐸𝑡+1 − 𝑡+1𝑉, if the life dies in the year [𝑡, 𝑡 + 1[ (wp 𝑞𝑥+𝑡)

𝑞𝑥+𝑡 is the probability of claiming in the policy year t to t + 1.

The expected amount of the death strain is called the Expected Death

Strain:

EDS = 𝐸 𝐷𝑆𝐴𝑅 = 0 + 𝑞𝑥+𝑡 𝑆𝑡+1 + 𝐸𝑡+1 − 𝑡+1𝑉 . 



The actual death strain (ADS) is the observed value at t+1 of the

death strain random variable (we already know what happened):

ADS =  
0, if the life survived to 𝑡 + 1

𝑆𝑡+1 + 𝐸𝑡+1 − 𝑡+1𝑉, if the life died in the year [𝑡, 𝑡 + 1]

The mortality profit is defined as the difference EDS-ADS.

Remark 32: DSAR is an important measure of the insurer’s risk if

mortality exceeds the basis assumption, and is useful in

determining risk management strategy, including reinsurance.



DSAR is a random variable: the maximum 'loss' the life office will

make if the person dies in the next year.

EDS is an expected value: the amount that the life insurance company

expects to pay extra to the year end reserve for the policy.

𝐄𝐃𝐒 = 𝐄 𝐃𝐒𝐀𝐑 .

ADS is the observed value at t+1 of the death strain random variable.

Mortality profit = EDS-ADS.



4.5.1.3 Annual profit

Consider a group of identical policies issued at the same

time. The recursive formulae for policy values show that if

all cash flows between 𝑡 and 𝑡 + 1 are as specified in the

policy value basis, then the insurer will be in a break-even

position (balanced) at time 𝑡 + 1, given that it was in a

break-even position at time 𝑡. These cash flows depend on

mortality, interest, expenses and, for participating policies,

bonus rates.



Remark 33: In practice, it is very unlikely that all the

assumptions will be met in any one year. If the assumptions are

not met, one of two situations takes place:

1. The value of the insurer’s assets at time 𝑡 + 1 is more than

sufficient to pay benefits due at that time and to provide a

policy value of 𝑡+1𝑉 for those policies still in force: the

insurer made a profit in the year.

2. The insurer’s assets at time 𝑡 + 1 are not sufficient to pay

benefits due at that time and to provide a policy value of 𝑡+1𝑉
for those policies still in force: the insurer made a loss in the

year.



Remark 34: In general terms,

Sources of profit:

• Actual interest earned on investments greater than the interest

assumed in the policy value basis;

• Actual mortality less than the mortality assumed in the policy value

basis for whole life and term and endowment policies; Actual

mortality higher than the mortality assumed in the policy value

basis for pure endowment and annuity policies;

• Actual expenses less than the expenses assumed in the policy value

basis;

• Actual bonus or dividend less than the assumed in the policy value

basis.

Sources of loss?

Rule: it is necessary to avoid ‘double counting’.



Sometimes the split is calculated in the order: interest, expenses,

mortality.

At each step it is assumed that:

Factors not yet considered are as specified in the policy value basis;

Factors already considered are as actually occurred.

This avoids ‘double counting’ and gives the correct total.



Remark 35: the exercise of breaking down the profit or loss into its

component parts is called analysis of surplus, and it is an important

exercise after any valuation.

The analysis of surplus:

Will indicate if any parts of the valuation basis are too conservative or too

weak;

Will assist in assessing the performance of the various managers involved in

the business, and in determining the allocation of resources;

Will help to determine how much surplus should be distributed for

participating business.



Study examples 7.3 and 7.8.



In pure endowment contracts, although the definition is the same, particular attention is

required as there is only one possible time for the payment of the benefit - on the maturity

of the contract.

Example:

A life insurance company issued 10-year pure endowment contracts to females aged 50

exact. The sum assured is 80 000, payable on maturity. Level quarterly premiums are

payable in advance.

Basis:

Mortality: AM92 select

Interest: 6% per annum

a) calculate the death strain at risk at the end of the second year of the policies.

b) the company sold 4000 policies. During the first policy year there were five deaths.

Calculate the minimum number of deaths during the second year for the company to

experience a mortality profit during this year. Explain why it is a “minimum”.



a) Annual Premium 

𝑃𝑎 
[50]:10|     
(4) = 80 000 𝑝[50]10 𝑣10 ⇔ 𝑃 =

80 000 𝑝[50]10 𝑣10

𝑎 
[50]:10|     
(4)

=
80 000(0.5342964)

𝑎 [50]:10|          
7.698

−
3
8
(1 − 0.22578)

= 5681.47 

DSAR =  
0,        if the life survives to 𝑡 + 1        (with probability  𝑝𝑥+𝑡)   

𝑆𝑡+1 + 𝐸𝑡+1 − 𝑉,𝑡+1  if the life dies in the year [𝑡, 𝑡 + 1[ (wp  𝑞𝑥+𝑡)
  

 

Reserve at the end of the second year 

 

 𝑉2 = 80 000 𝑝528 𝑣8 − 5681.47𝑎 
52:8| 
(4)

= 48 253.5123− 5681.47(6.351) = 12 170.50 

 

Then 

  DSAR =  

0,        if the life survives to 𝑡 = 2 (wp 𝑝[50]+1)   

0 
𝑆2

+ 0 
𝐸2

− 12 170.50       

𝑉2

,  if the life dies in the year [1,2[      (wp 𝑞[50]+1) 



b)

Mortality profit/loss = Expected Death Strain – Actual Death Strain

Expected Death Strain = 4000 − 5 𝑞 50 +1

0.000569

× −12 170.50 = −27 665.425

𝑑 = number of deaths during the second year

Actual Death Strain = −12 170.50 𝑑

mortality profit = −27 665.425 − −12 170.50𝑑 > 0 ⟺ 𝑑 > 2.27.

The minimum number of deaths during the second year for the company to

experience a mortality profit during this year is three. “Minimum” because in pure

endowment contracts, the least policyholders survive to maturity, the better to the

insurer.
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Valuation at premium dates for policies with discrete cash flows at the start/end 

of each year 

𝑉𝑡 = 𝐸[𝐿𝑡] =  𝑞[𝑥]+𝑡(1 + 𝑖𝑡)
−1(𝑆𝑡+1 + 𝐸𝑡+1) +  𝑝[𝑥]+𝑡(1 + 𝑖𝑡)

−1𝐸[𝐿𝑡+1] + 𝑒𝑡 − 𝑃𝑡  

 

Recursive formula 

𝑉𝑡 =  𝑞[𝑥]+𝑡(1 + 𝑖𝑡)
−1(𝑆𝑡+1 + 𝐸𝑡+1) +  𝑝[𝑥]+𝑡(1 + 𝑖𝑡)

−1 𝑉𝑡+1 −  (𝑃𝑡 − 𝑒𝑡) ⟺ 

𝑉𝑡+1 =
𝑉 +  (𝑃𝑡 − 𝑒𝑡) − (1 + 𝑖𝑡)

−1 𝑞[𝑥]+𝑡(𝑆𝑡+1 + 𝐸𝑡+1)𝑡

(1 + 𝑖𝑡)
−1 𝑝[𝑥]+𝑡

 

 

Valuation at premium dates for policies with premium payments at discrete 

intervals other than annually is performed in the same way, since the definition still 

applies. Extra care is necessary to derive recursive formulae because the premiums 

and benefits may be paid with different frequency.  

 



Valuation between premium dates for policies with premium payments at discrete

intervals, annually and other than annually

The policy value is still the EPV of future benefits plus expenses minus premiums. A

reasonable approximation is obtained by interpolating between the policy value just after

the previous premium and the policy value just before the next premium.

Annual case: assume premiums are payable at 𝑡 and 𝑡 + 1 and is necessary to calculate the

policy value at 𝑡 + 𝑠, 0 < 𝑠 < 1. Interpolating between 𝑡+𝑉 = 𝑡𝑉 + 𝑃𝑡 − 𝑒𝑡 and 𝑡+1𝑉

solves the problem. The result of the interpolation is 𝑡+𝑠𝑉 ≈ 𝑡+𝑉 × 1 − 𝑠 + 𝑡+1𝑉 × 𝑠.

Cases other than annual: assume premiums are payable at 𝑡 + 𝑘 and 𝑡 + 2𝑘, and is

necessary to calculate the policy value at 𝑡 + 𝑘 + 𝑠, 0 < 𝑠 < 𝑘 < 1. Now, interpolating

between 𝑡+𝑘+𝑉 = 𝑡+𝑘𝑉 + 𝑃𝑡+𝑘 − 𝑒𝑡+𝑘 and 𝑡+2𝑘𝑉 solves the problem. The result is

𝑡+𝑘+𝑠𝑉 ≈ 𝑡+𝑘+𝑉 1 −
𝑠

𝑘
+ 𝑡+2𝑘𝑉

𝑠

𝑘
.



Valuation for policies with continuous cash flows using first principles and Thiele’s 

differential equation 

The definitions and procedures extend to policies where regular payments – premiums 

and/or annuities – are payable continuously and sums insured are payable immediately 

on death. It follows then that  

 𝑉𝑡 =  
𝑣(𝑟)

𝑣(𝑡)
(𝑆𝑟 + 𝐸𝑟) 𝑝𝑟−𝑡 [𝑥]+𝑡 × 𝜇[𝑥]+𝑟𝑑𝑟 −

∞

𝑡
  

𝑣(𝑟)

𝑣(𝑡)
(𝑃𝑟 − 𝑒𝑟) 𝑝𝑟−𝑡 [𝑥]+𝑡𝑑𝑟

∞

𝑡
, 

an equality that can be used to calculate 𝑉𝑡  by numerical integration.  

As numerical integration is sometimes difficult, an alternative process is used, which 

requires this equality to be turned into a differential equation (Thiele’s differential 

equation), a result that is obtained by means of a number of simple algebraic operations.  

𝑑

𝑑𝑡
 𝑉𝑡  = 𝛿𝑡 𝑉𝑡 + 𝑃𝑡 − 𝑒𝑡 −  𝑆𝑡 + 𝐸𝑡 − 𝑉𝑡  𝜇[𝑥]+𝑡    

There are numerical techniques to solve differential equations (and obtain 𝑉𝑡 ). 

 



4. CALCULATION OF PREMIUMS AND RESERVES (Dickson et al. – Chaps. 6-

7, pp. 142-229)

4.7 Policy alterations

In practice, sometimes policyholders request a change in the terms of

the policy, after it has been in force for some time:

• reducing or increasing premiums;

• changing the amount of the benefits;

• converting a whole life insurance to an endowment insurance;

• converting a non-participating policy to a with-profit policy;

• …

The common feature of these changes is that they are requested by

the policyholder and were not part of the original terms of the policy.



Remark 43: Typical changes:

1. The policyholder wishes to cancel the policy with immediate

effect. If the policy has a significant investment component, at

least part of the funds belong to the policyholder and the insurer

should pay a lump sum, the surrender value (or cash value)

Such a policy is said to lapse (when no surrender value is paid) or to

be surrendered (when there is a return of assets of some amount to

the policyholder).

The allowance for zero cash values for early surrenders reflects the

need of the insurers to recover the new business strain associated with

issuing the policy.



2. The policyholder wishes to pay no more premiums but does

not want to cancel the policy.

A (reduced) sum insured is still payable on death or on survival to

the end of the original term.

Any policy for which no further premiums are payable is said to

be paid-up, and the reduced sum insured for a policy which

becomes paid-up before the end of its original premium paying

term is called a paid-up sum insured.

A whole life policy may be converted to a paid-up term insurance

policy for the original sum insured.



Let 𝐶𝑡 denote the cash surrender value at duration 𝑡.

Starting points for the calculation of an appropriate value for 𝐶𝑡
could be:

(i) the policy value at 𝑡, 𝑡𝑉, if it is to be calculated in advance;

(ii) or the policy’s asset share, 𝐴𝑆𝑡 , when the surrender value is

not pre-specified.

𝐴𝑆𝑡 is (approximately) equal to the cash the insurer actually has

and 𝑡𝑉 is the amount the insurer should have at time 𝑡 in respect

of the original policy - if the policy value basis is close to the

actual experience, then 𝑡𝑉 will be numerically close to 𝐴𝑆𝑡 .



𝐶𝑡 is usually less than 100% of either 𝐴𝑆𝑡 or 𝑡𝑉 and may include an explicit

allowance for the expense of making the alteration, because:

1. The policyholder may be acting on knowledge that is not available to

the insurer. For example, a policyholder may alter a whole life policy to

a term insurance (with lower premiums or a higher sum insured) if he

or she becomes aware that his or her health is failing. This is called

anti-selection or selection against the insurer.

2. The insurance company will incur some expenses in making the

alterations to the policy, and even in calculating and informing the

policyholder of the revised values, which the policyholder may not

agree to accept.

3. The alteration may cause the insurance company to realize assets it

would otherwise have held, especially if the alteration is a surrender.

This liquidity risk may lead to reduced investment returns for the

company.



For alterations other than cash surrenders, 𝐶𝑡 is a single premium, or an

extra preliminary premium, for the future benefits. Together with the cash

currently available 𝐶𝑡 the future premiums are expected to provide the future

benefits and pay for the future expenses. The equation of value for the

altered benefits is then

𝐶𝑡 + EPV at 𝑡 of future premiums, altered contract

= EPV at 𝑡 of future benefits plus expenses, altered contract (7.15)

The numerical value of the revised benefits and/or premiums calculated

using equation (7.15) depends on the basis used for the calculation (survival

model, interest rate, expenses, and future bonuses - for a with profits policy).

This basis may be the same as the premium basis, or the same as the policy

value basis, but in practice usually differs from both of them.

Examples 7.13 and 7.14



4.8 Retrospective policy value

The policy value is sometimes called a prospective policy value. A

retrospective policy value at duration t, could also be calculated, by

accumulating premiums received less benefits paid up to time t for a

large group of identical policies, assuming the experience follows

precisely the assumptions in the policy value basis, and sharing the

resulting fund equally among the surviving policyholders.

Under the usual conditions (the premium is calculated using the

equivalence principle and the expected value of the future loss

random variable is calculated using the premium basis) the

retrospective and prospective policy values are equal.

CT5 September 2012 Q9



SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE 19

MASTER IN ACTUARIAL SCIENCE



5. MULTI-STATE POLICIES (Dickson et al. – Chap. 8, pp. 230-289; pictures

below are from this book)

5.1 Multiple state models (MSM)

MSM are a recent development in actuarial science.

MSM simplify some traditional actuarial techniques.

Each state represents the status of an individual or a set of

individuals.

The MSM introduced below are all extremely useful in an

insurance context.



5.1.1 The alive–dead model

Consider (x). To model the uncertainty over the duration of the

individual’s future lifetime this is regarded as a random variable, 𝑇𝑥,

with a given cumulative distribution function, 𝐹𝑥 𝑡 = 𝑃 𝑇𝑥 ≤ 𝑡 ,

and survival function, 𝑆𝑥 𝑡 = 1 − 𝐹𝑥 𝑡 .

MSM approach:

The individual aged 𝑥 ≥ 0 at time 𝑡 = 0 is, at any time, in one of two

states, ‘Alive’ – State 0 – and ‘Dead’ – State 1. Transition from state

0 to state 1 is allowed, but transitions in the opposite direction cannot

occur. This is an example of a multiple state model with two states.





For each 𝑡 ≥ 0 define a random variable 𝑌 𝑡 so that

𝑌 𝑡 =  
0 if the individual is alive at time 𝑡 (and aged 𝑥 + 𝑡)
1 if the individual is dead at time 𝑡

The set of random variables 𝑌 𝑡 𝑡≥0 is a continuous time

stochastic process (a collection of random variables indexed by a

continuous time variable). 𝑇𝑥 is the time at which 𝑌 𝑡 jumps from 0

to 1, that is, 𝑇𝑥 = 𝑚𝑎𝑥 𝑡: 𝑌 𝑡 = 0 .
The alive–dead model captures all the survival/mortality information

for an individual that is necessary to find premiums and reserves for

policies where payments – premiums, benefits and expenses –

depend only on whether the individual is alive or dead at any given

age, for example a term insurance or a whole life annuity.



Each one of the following models is appropriate for a given

insurance policy in the sense that the condition for a payment

relating to the policy, for example a premium, an annuity or a

sum insured, is either that the individual is in a specified state

at that time or that the individual makes an instantaneous

transfer between a specified pair of states at that time.



5.1.2 Term insurance with increased benefit on accidental death (the

accidental death model)

Suppose a term insurance policy under which the death benefit is 𝑆1
if death is due to an accident during the policy term and 𝑆2 < 𝑆1 if it

is due to any other cause. The alive–dead model is not sufficient for

this policy since, when the individual dies it is necessary to know

whether death was due to an accident.





Now, for each 𝑡 ≥ 0 define a random variable 𝑌 𝑡 so that

𝑌 𝑡 =  
0 if the individual is alive at time 𝑡 and aged 𝑥 + 𝑡
1 if the individual is dead (from an accident) at time 𝑡
2 if the individual is dead (from other causes) at time 𝑡



• In these two models an individual starts in state 0, and, at some

future time, dies.

• The difference is that we now need to distinguish between deaths

due to accident and deaths due to other causes since the sum

insured is different in the two cases.

• It is the benefits provided by the insurance policy which

determine the nature of the appropriate model.



5.1.3 The permanent disability model

This is a model appropriate for a policy providing some or all

of the following benefits:

• an annuity while permanently disabled,

• a lump sum on becoming permanently disabled,

• a lump sum on death.

Premiums are payable while healthy.

States: ‘Healthy’ – State 0; ‘Disabled’ – State 1 and ‘Dead’–

State 2

An important feature is that disablement is permanent – there

is no arrow from state 1 back to state 0.





𝑌 𝑡 =  
0 if the individual is healthy at time 𝑡 and aged 𝑥 + 𝑡

1 if the individual is permanently disabled at time 𝑡 and aged 𝑥 + 𝑡
2 if the individual is dead at time 𝑡



5.1.4 The disability income insurance model

Disability income insurance pays a benefit during periods of

sickness; the benefit ceases on recovery. This is an appropriate

model for a policy which provides an annuity while the person is

sick, with premiums payable while the person is healthy. It could

also be used when there are lump sum payments on becoming sick

or dying.

States: ‘Healthy’ – State 0; ‘Sick’ – State 1 and ‘Dead’– State 2.





𝑌 𝑡 =  
0 if the individual is healthy at time 𝑡 and aged 𝑥 + 𝑡

1 if the individual is sick at time 𝑡 and aged 𝑥 + 𝑡
2 if the individual is dead at time 𝑡



The model differs from the previous one because now it is

possible to transfer from state 1 to state 0, that is, to recover from

an illness.

This model also illustrates an important general feature of multiple

state models which was not present before: the possibility of

entering one or more states many times. This means that several

periods of sickness could occur before death, with healthy

(premium paying) periods in between.



5.1.5 The joint life and last survivor models

Def. 1: A joint life annuity is an annuity payable until the first death

among a group of lives.

Def. 2: A last survivor annuity is an annuity payable until the last

death among a group of lives.

Remark 3: In principle, and occasionally in practice, the group

could consist of three or more lives. However, such policies are most

commonly purchased by couples who are jointly organizing their

financial security and we will restrict our attention to the case of two

lives whom we will label, for convenience, ‘husband’ and ‘wife’.



Def. 4: A common benefit design is an annuity payable at a higher

rate while both partners are alive and at a lower rate following the first

death. The annuity ceases on the second death. This could be viewed

as a last survivor annuity for the lower amount, plus a joint life

annuity for the difference.

Def. 5: A reversionary annuity is a life annuity that starts payment

on the death of a specified life, if his or her spouse is alive, and

continues through the spouse’s lifetime. A pension plan may offer a

reversionary annuity benefit as part of the pension package, payable to

the pension plan member’s spouse for their remaining lifetime after

the member’s death.

Def. 6: Joint life insurance: a death benefit is paid on the first death

of the husband and wife.



An appropriate model for these policies, the joint life

and last survivor model, has four states:

‘Husband Alive, Wife Alive’ – State 0;

‘Husband Alive, Wife Dead’ – State 1;

‘Husband Dead, Wife Alive’ – State 2;

‘Husband Dead, Wife Dead’ – State 3;





Let 𝑥 and 𝑦 denote the ages of the husband and wife, respectively, when the

annuity or insurance policy is purchased, at 𝑡 = 0.

For 𝑡 ≥ 0,

𝑌 𝑡 =

0 if both husband and wife are alive at time 𝑡 and aged 𝑥 + 𝑡 and 𝑦 + 𝑡, respectively

1 if the husband is alive at age 𝑥 + 𝑡 and the wife died before age 𝑦 + 𝑡
2 if the husband died before age 𝑥 + 𝑡 and the wife is alive at age 𝑦 + 𝑡
3 if both husband and wife are dead at time 𝑡
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5.2 Assumptions and notation

Consider a general multiple state model with:

• a finite set of 𝑛 + 1 states labelled 0, 1, . . . , 𝑛;
• instantaneous transitions being possible between selected

pairs of states;

• these states represent different conditions for an individual

or group of individuals;

• for each 𝑡 ≥ 0 define a random variable 𝑌 𝑡 which takes

one of the values 0, 1, . . . , 𝑛, and we interpret the event

𝑌 𝑡 = 𝑖 to mean that the group of lives being modelled is

in state 𝑖 at time 𝑡. The set of random variables 𝑌 𝑡 𝑡≥0 is

then a continuous time stochastic process.



The multiple state model is an appropriate model for an insurance

policy if the payment of benefits or premiums is dependent on

being in a given state or moving between a given pair of states at

a given time, as illustrated in the examples.

Remark that there is a natural starting state for the policy, always

labelled state 0. This is the case for all examples based on

multiple state models. For example, a policy providing an annuity

during periods of sickness in return for premiums payable while

healthy, would be issued only to a person who was healthy at that

time.



Assumption 1.

For any states 𝑖 and 𝑗 and any times 𝑡 and 𝑡 + 𝑠, where 𝑠 ≥ 0, the

conditional probability 𝑃𝑟[𝑌 (𝑡 + 𝑠) = 𝑗 | 𝑌 (𝑡) = 𝑖] does

not depend on any information about the process before time 𝑡.

Intuitively, this means that the probabilities of future events for

the process are completely determined by knowing its current

state. In particular, these probabilities do not depend:

• on how the process arrived at the current state

• or how long it has been in the current state.

This property, that probabilities of future events depend on the

present but not on the past, is known as the Markov property,

i.e. we are assuming that 𝑌 𝑡 𝑡≥0 is a Markov process.



Assumption 1 is sometimes not made explicitly since it is unnecessary

given the interpretation of the models in question. For instance, if we

know that the process is in state 0 at time x (so that the individual is

alive at age x) then we know the past of the process (the individual was

alive at all ages before x).

Assumption 1 is more interesting, for example, in the disability income

insurance model. If we know that 𝑌 𝑡 = 1, (the individual is sick at

time 𝑡), then Assumption 1 says that the probability of any future move

after time 𝑡 (either recovery or death), does not depend on any further

information, such as how long the life has been sick up to time 𝑡, or how

many different periods of sickness the life has experienced up to time 𝑡.
(In practice, we might believe that the probability of recovery in, say,

the next week would depend on how long the current sickness has

already lasted.)



Assumption 2.

For any positive interval of time h,

P𝑟[2 or more transitions within a time period of length ℎ] = 𝑜(ℎ).

Recall that a function 𝑔(ℎ), is said to be 𝑜(ℎ) if lim
ℎ→0

𝑔(ℎ)

ℎ
= 0 (as ℎ

converges to 0, 𝑔(ℎ) converges to zero faster than ℎ.)

Assumption 2 tells us that for a small interval of time ℎ , the

probability of two or more transitions in that interval is so small that it

can be ignored. This assumption is unnecessary for the models where

only one transition can ever take place. However, it is a necessary

assumption for technical reasons in the other situations. In these cases,

given our interpretation of the models, it is not an unreasonable

assumption.



Assumption 3.

For all states 𝑖 and 𝑗 and all ages 𝑥 ≥ 0, the probability that a

life aged 𝑥 in state 𝑖 is in state 𝑗 at age 𝑥 + 𝑡, where 𝑗 may be

equal to 𝑖, is a differentiable function of 𝑡.

Assumption 3 is a technical assumption needed to ensure that

the mathematics proceeds smoothly. A consequence of this

assumption is that the probability of a transition taking place in

a time interval of length 𝑡 converges to 0 as 𝑡 converges to 0.

These three assumptions are not too restrictive in practice.



Notation:

For states 𝑖 and 𝑗 in a multiple state model and for 𝑥, 𝑡 ≥ 0:

𝑡𝑝𝑥
𝑖𝑗
= 𝑃𝑟[𝑌 (𝑥 + 𝑡) = 𝑗 | 𝑌 (𝑥) = 𝑖] (8.1)

𝑡𝑝𝑥
 𝑖𝑖 = 𝑃𝑟[𝑌 (𝑥 + 𝑠) = 𝑖 ∀𝑠 ∈ 0, 𝑡 | 𝑌 (𝑥) = 𝑖] (8.2)

𝜇𝑥
𝑖𝑗
= lim

ℎ→0+
ℎ𝑝𝑥

𝑖𝑗

ℎ
= lim

ℎ→0+

𝑃𝑟[𝑌 (𝑥+ℎ) = 𝑗 | 𝑌 (𝑥) = 𝑖]

ℎ
, 𝑖 ≠ 𝑗 (8.3)

𝑡𝑝𝑥
𝑖𝑗

is the probability that a life aged 𝑥 in state 𝑖 is in state 𝑗 at age

𝑥 + 𝑡, where 𝑗 may be equal to 𝑖;

𝑡𝑝𝑥
 𝑖𝑖 is the probability that a life aged 𝑥 in state 𝑖 stays in state 𝑖

throughout the period from age 𝑥 to age 𝑥 + 𝑡;

𝜇𝑥
𝑖𝑗

is the force of transition or transition intensity between states i

and j, at age x.



Remark 7: Another consequence of Assumption 3 is that the limit in the

definition of 𝜇𝑥
𝑖𝑗

always exists. It is also assumed that 𝜇𝑥
𝑖𝑗

is a bounded and

integrable function of 𝑥.

Further, formula (8.3),

𝜇𝑥
𝑖𝑗
= lim

ℎ→0+
ℎ𝑝𝑥

𝑖𝑗

ℎ
= lim

ℎ→0+

𝑃𝑟[𝑌 (𝑥+ℎ) = 𝑗 | 𝑌 (𝑥) = 𝑖]

ℎ
, 𝑖 ≠ 𝑗,

can be written

ℎ𝑝𝑥
𝑖𝑗
= 𝑃𝑟[𝑌 (𝑥 + ℎ) = 𝑗 | 𝑌 (𝑥) = 𝑖] = ℎ𝜇𝑥

𝑖𝑗
+ 𝑜 ℎ , ℎ > 0 8.4

Then, for small positive values of h

ℎ𝑝𝑥
𝑖𝑗
≈ ℎ𝜇𝑥

𝑖𝑗
8.5



Illustration 8: In terms of the alive–dead model the following

observations follow:

𝑡𝑝𝑥
00 = 𝑡𝑝𝑥

𝑡𝑝𝑥
01 = 𝑡𝑞𝑥

𝑡𝑝𝑥
10 = 0

0𝑝𝑥
𝑖𝑗
= 1, 𝑖 = 𝑗

0𝑝𝑥
𝑖𝑗
= 0, 𝑖 ≠ 𝑗

𝜇𝑥
01 = 𝜇𝑥, the force of mortality at age 𝑥.

Formula (8.4):

ℎ𝜇𝑥
01 ≈ 𝑃𝑟[𝑌 (𝑥 + ℎ) = 1 | 𝑌 (𝑥) = 0] = ℎ𝑝𝑥

01

is equivalent to formula (2.8):

𝜇𝑥𝑑𝑥 ≈ 𝑃𝑟[𝑇0 ≤ 𝑥 + 𝑑𝑥 | 𝑇0 > 𝑥]



5.3 Transition intensities and probabilities

In Chapter 2, it was assumed that the force of mortality was

known and formula 𝑡𝑝𝑥 = 𝑒−  𝑥
𝑥+𝑡

𝜇𝑟𝑑𝑟 = 𝑒−  0
𝑡
𝜇𝑥+𝑠𝑑𝑠 was

derived.

This same approach is adopted here where the transition

intensities are known and formulae for all probabilities are

derived in terms of them. 𝜇𝑥
𝑖𝑗
, 𝑥 ≥ 0, 𝑖, 𝑗 = 0,1,… , 𝑛, 𝑖 ≠ 𝑗 are

fundamental quantities which determine everything about a

multiple state model.



Result 9:

For any state i in a multiple state model,

𝑡𝑝𝑥
𝑖𝑖 = 𝑡𝑝𝑥

 𝑖𝑖 + 𝜊 𝑡 8.6

ℎ𝑝𝑥
 𝑖𝑖 = 1 − ℎ  

𝑗=0,𝑗≠𝑖

𝑛

𝜇𝑥
𝑖𝑗
+ 𝜊 ℎ , ℎ > 0 8.7

𝑡𝑝𝑥
 𝑖𝑖 = 𝑒−  0

𝑡
 𝑗=0,𝑗≠𝑖
𝑛 𝜇𝑥+𝑠

𝑖𝑗
𝑑𝑠 8.8

See Example 8.3.



Remark 10:

𝑡+ℎ𝑝𝑥
 𝑖𝑖 = 𝑡𝑝𝑥

 𝑖𝑖 × ℎ𝑝𝑥+𝑡
 𝑖𝑖 because 𝑡+ℎ𝑝𝑥

 𝑖𝑖 is the probability that the

individual/process stays in state i throughout the time period [0, t

+h], given that the process was in state i at age x and this event can

be split into two sub-events:

• the process stays in state i from age x until (at least) age x + t,

given that it was in state i at age x,

• the process stays in state i from age x +t until (at least) age x +t

+h, given that it was in state i at age x + t.

Further 𝑡+ℎ𝑝𝑥
 𝑖𝑖 = 𝑡𝑝𝑥

 𝑖𝑖 × ℎ𝑝𝑥+𝑡
 𝑖𝑖 can be written

𝑡+ℎ𝑝𝑥
 𝑖𝑖 = 𝑡𝑝𝑥

 𝑖𝑖 1 − ℎ 𝑗=0,𝑗≠𝑖
𝑛 𝜇𝑥+𝑡

𝑖𝑗
+ 𝜊 ℎ



Remark 11:

The same reasoning can be applied to a general multiple state

model to derive formulae for probabilities (Kolmogorov’s

forward equations).

To derive Kolmogorov’s forward equations, we consider the

probability of being in the required state, j, at age x + t + h, and

condition on the state of the process at age x + t: either it is

already in state j, or it is in some other state, say k, and a

transition to j is required before age x + t + h.



Result 12:

Let i and j be any two, not necessarily distinct, states in a multiple state 

model which has a total of n + 1 states. 

For x, t ≥ 0, Kolmogorov’s forward equations are:

𝑑

𝑑𝑡 𝑡𝑝𝑥
𝑖𝑗
=  𝑘=0,𝑘≠𝑗

𝑛
𝑡𝑝𝑥

𝑖𝑘𝜇𝑥+𝑡
𝑘𝑗

− 𝑡𝑝𝑥
𝑖𝑗
𝜇𝑥+𝑡
𝑗𝑘

(8.14)

𝑑

𝑑𝑡 𝑡𝑝𝑥
 𝑖𝑖 = − 𝑡𝑝𝑥

 𝑖𝑖  

𝑘=0,𝑘≠𝑖

𝑛

𝜇𝑥+𝑡
𝑖𝑘 ⟹ 𝑡𝑝𝑥

 𝑖𝑖 = 𝑒−  0
𝑡
 𝑘=0,𝑘≠𝑖
𝑛 𝜇𝑥+𝑠

𝑖𝑘 𝑑𝑠 (8.8)



Particular cases 

𝑛 = 1 (2 states)

𝑑

𝑑𝑡 𝑡𝑝𝑥
00 = 𝑡𝑝𝑥

01𝜇𝑥+𝑡
10 − 𝑡𝑝𝑥

00𝜇𝑥+𝑡
01 ;

𝑑

𝑑𝑡 𝑡𝑝𝑥
01 = 𝑡𝑝𝑥

00𝜇𝑥+𝑡
01 − 𝑡𝑝𝑥

01𝜇𝑥+𝑡
10

𝑑

𝑑𝑡 𝑡𝑝𝑥
10 = 𝑡𝑝𝑥

11𝜇𝑥+𝑡
10 − 𝑡𝑝𝑥

10𝜇𝑥+𝑡
01 ;

𝑑

𝑑𝑡 𝑡𝑝𝑥
11 = 𝑡𝑝𝑥

10𝜇𝑥+𝑡
01 − 𝑡𝑝𝑥

11𝜇𝑥+𝑡
10

𝑡𝑝𝑥
00 = 𝑒−  0

𝑡
𝜇𝑥+𝑠
01
; 𝑡𝑝𝑥

11 = 𝑒−  0
𝑡
𝜇𝑥+𝑠
10

𝑛 = 2 (3 states)

𝑑

𝑑𝑡 𝑡𝑝𝑥
00 = 𝑡𝑝𝑥

01𝜇𝑥+𝑡
10 − 𝑡𝑝𝑥

00𝜇𝑥+𝑡
01 + 𝑡𝑝𝑥

02𝜇𝑥+𝑡
20 − 𝑡𝑝𝑥

00𝜇𝑥+𝑡
02 ; 

𝑑

𝑑𝑡 𝑡𝑝𝑥
01 = 𝑡𝑝𝑥

00𝜇𝑥+𝑡
01 − 𝑡𝑝𝑥

01𝜇𝑥+𝑡
10 + 𝑡𝑝𝑥

02𝜇𝑥+𝑡
21 − 𝑡𝑝𝑥

01𝜇𝑥+𝑡
12 ; …

𝑡𝑝𝑥
00 = 𝑒−  0

𝑡
𝜇𝑥+𝑠
01 +𝜇𝑥+𝑠

02
;…



5.4 Numerical evaluation of probabilities

See Example 8.4

𝑡𝑝𝑥
 𝑖𝑖 = 𝑒−  0

𝑡
 𝑗=0,𝑗≠𝑖
𝑛 𝜇𝑥+𝑠

𝑖𝑗
𝑑𝑠 8.8

𝑢𝑝𝑥
01 =  

0

𝑢

𝑡𝑝𝑥
00𝜇𝑥+𝑡

01 × 𝑢−𝑡𝑝𝑥+𝑡
11 𝑑𝑡 8.11

and Example 8.5

𝑡+ℎ𝑝𝑥
𝑖𝑗
= 𝑡𝑝𝑥

𝑖𝑗
− ℎ  

𝑘=0,𝑘≠𝑗

𝑛

𝑡𝑝𝑥
𝑖𝑗
𝜇𝑥+𝑡
𝑗𝑘

− 𝑡𝑝𝑥
𝑖𝑘𝜇𝑥+𝑡

𝑘𝑗
+ 𝑜(ℎ) (8.13)
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5. MULTI-STATE POLICIES (Dickson et al. – Chap. 8, pp. 230-289)

5.5 Premiums

Multiple state models are a natural way of:

• modelling cash flows for insurance policies.

• evaluating probabilities for such models given the transition

intensities between pairs of states.

To calculate premiums and policy values for a policy represented

by MSM it is necessary to generalize the definitions of insurance

and annuity functions to a multiple state framework.



Example 1:

Consider a life aged x currently in state i of a multiple state

model. How to value an annuity of 1 per year payable

continuously while the life is in some state j (which may be

equal to i)?

The EPV of the annuity, at force of interest δ per year, is

 𝑎𝑥
𝑖𝑗
= 𝐸  

0

∞

𝑒−𝛿𝑡𝐼 𝑌 𝑡 = 𝑗|𝑌 0 = 𝑖 𝑑𝑡

=  
0

∞

𝑒−𝛿𝑡𝐸 𝐼 𝑌 𝑡 = 𝑗|𝑌 0 = 𝑖 𝑑𝑡 =  
0

∞

𝑒−𝛿𝑡 𝑡𝑝𝑥
𝑖𝑗
𝑑𝑡 ,

𝐼 the indicator function.



Example (cont.):

How to value an annuity if it is payable at the start of each year,

from the current time?

The EPV of the annuity is now

 𝑎𝑥
𝑖𝑗
=  

𝑘=0

∞

𝑣𝑘 𝑘𝑝𝑥
𝑖𝑗

Annuity benefits payable more frequently can be valued similarly.



For insurance benefits, the payment is usually conditional on

making a transition. A death benefit is payable on transition into

the dead state; a critical illness insurance policy might pay a sum

insured on death or earlier diagnosis of one of a specified group

of illnesses.

Example 2

Suppose a unit benefit is payable immediately on each future

transfer into state k, given that the life is currently in state i

(which may be equal to k).

The EPV of the benefit is …



 𝐴𝑥
𝑖𝑘 =  

0

∞
 𝑗≠𝑘 𝑒

−𝛿𝑡
𝑡𝑝𝑥

𝑖𝑗
𝜇𝑥+𝑡
𝑗𝑘

𝑑𝑡 (8.16)

As usual, to derive this EPV, consider payment in the interval

(t, t + dt) and that:

• the amount of the payment is 1;

• the discount factor is 𝑒−𝛿𝑡;
• the probability that the benefit is paid is the probability that the life

transfers into state k in (t, t + dt), given that the life is in state i at time

0. In order to transfer into state k in (t, t + dt), the life must be in some

state j that is not k immediately before (the probability of two

transitions in infinitesimal time being negligible), with probability

𝑡𝑝𝑥
𝑖𝑗

, then transfer from j to k during the interval (t, t + dt), with

probability (loosely) 𝜇𝑥+𝑡
𝑗𝑘

𝑑𝑡.

Summing (that is, integrating) over all the possible time intervals gives

equation (8.16).



Remark the differences between the two previous cases, where the

three key points listed above show clearly:

The value of an annuity of 1 per year payable at the start of each year

to a life aged x, currently in state i, while the life is in some state j is

 𝑎𝑥
𝑖𝑗
=  

𝑘=0

∞

1𝑣𝑘 𝑘𝑝𝑥
𝑖𝑗

The value of a unit benefit payable immediately on each future

transfer into state k, given that the life is currently in state i is

 𝐴𝑥
𝑖𝑘 =  

0

∞

 

𝑗≠𝑘

1𝑒−𝛿𝑡 𝑡𝑝𝑥
𝑖𝑗
𝜇𝑥+𝑡
𝑗𝑘

𝑑𝑡



Other benefits and annuity designs are feasible. Most

practical cases can be managed from first principles using

the indicator function approach.

In general, premiums are calculated using the equivalence

principle, assuming that lives are in state 0 at the policy

inception date.



5.6 Policy values and Thiele’s differential equation generalisation

The definition of the time t policy value for a policy modeled using a

multiple state model is as before – it is the expected value at that time

of the future loss random variable – with one additional requirement.

For a policy described by a multiple state model, the future loss

random variable, and hence the policy value, at duration t years

depends on which state of the model the policyholder is in at that

time.

A policy value is then the expected value at that time 𝑡 of the future

loss random variable conditional on the policy being in a given state 𝑖

at that time. It is denoted by 𝑡𝑉
𝑖

.



Consider an insurance policy issued at age x and with term n years

described by a multiple state model with 𝑛 + 1 states, labelled

0,1,… , 𝑛.

Notation:

𝜇𝑦
𝑖𝑗

: transition intensities between states 𝑖 and 𝑗 at age 𝑦.

𝛿𝑡: force of interest per year at time 𝑡.

𝐵𝑡
𝑖
: rate of payment of benefit while the policyholder is in state 𝑖.

The premiums are included as negative benefits and expenses are

included as additions to the benefits

𝑆𝑡
𝑖𝑗
: lump sum benefit payable instantaneously at time t on

transition from state i to state j.

𝛿𝑡, 𝐵𝑡
𝑖

and 𝑆𝑡
𝑖𝑗

are continuous functions of t.



For this very general model, 𝑖 = 0,1,… , 𝑛 and 0 ≤ 𝑡 ≤ 𝑛, Thiele’s

differential equation, which can be solved numerically using

Euler’s method, is

𝑑

𝑑𝑡 𝑡
𝑉 𝑖 = 𝛿𝑡 𝑡𝑉

𝑖 − 𝐵𝑡
𝑖
−  

𝑗=0,𝑗≠𝑖

𝑛

𝜇𝑥+𝑡
𝑖𝑗

𝑆𝑡
𝑖𝑗
+ 𝑡𝑉

𝑗 − 𝑡𝑉
𝑖

(8.23)



5.7 Multiple decrement models (competing risks)

Multiple decrement models are special types of multiple state

models which occur frequently in actuarial applications.

A multiple decrement model is characterized by having a single

starting state and several exit states with a possible transition

from the starting state to any of the exit states, but no further

transitions. The accidental death model is an example of such a

model with two exit states.





Calculating probabilities for a multiple decrement model is

relatively easy since only one transition can ever take place. For

such a model we have for 𝑖 = 1,2,… , 𝑛 and 𝑗 = 0,1,… , 𝑛 𝑗 ≠ 𝑖 ,

𝑡𝑝𝑥
00 = 𝑡𝑝𝑥

00 = 𝑒−  0
𝑡
 𝑖=1
𝑛 𝜇𝑥+𝑠

0𝑖 𝑑𝑠,

𝑡𝑝𝑥
0𝑖 =  

0

𝑡

𝑠𝑝𝑥
00𝜇𝑥+𝑠

0𝑖 𝑑𝑠,

0𝑝𝑥
𝑖𝑖 = 1,

0𝑝𝑥
𝑖𝑗
= 0.

Assuming the transition intensities as functions of 𝑥 are known, it is

possible to calculate 𝑡𝑝𝑥
00 and 𝑡𝑝𝑥

0𝑖 using numerical or analytic

integration.



MULTI-STATE POLICIES (Dickson et al. – Chap. 8, pp. 230-289)

5.8 Joint life status and last survivor status

(Institute and Faculty of Actuaries, Subject CT5- Contingencies - Core Technical

- Core Reading

UNIT 6 - ANNUITIES AND ASSURANCES INVOLVING TWO LIVES)

5.8.1 The model and assumptions

Consider the valuation of benefits and premiums for an insurance

policy where payments depend on the survival or death of two

lives, husband’ and ‘wife’. Such policies are very common. Policies

relating to three or more lives also exist, but are far less common.

Consider future payments from a time when both husband and wife

are alive and are aged x and y, respectively. It is necessary to

evaluate probabilities of survival/death for the two lives using an

adequate model. Consider the model below.





Notation:

𝜇𝑥+𝑡:𝑦+𝑡
01 is the intensity of mortality for the wife when she is aged y+t

given that her husband is still alive and that he is aged x+t.

…

𝑡𝑝𝑥+𝑢
13 denotes the probability that the husband, who is now aged x +u

and whose wife has already died, dies before reaching age x +u +t.

The exact age at which the wife died is assumed to be irrelevant and

so is not part of the notation.

Although this is a death probability, the multi state notation makes no

use of the letter q. The standard actuarial notation for joint life

benefits differs from the general multiple state model notation.

…



Actuarial 

notation

Multi state 

notation

Pr 𝑥 and 𝑦 are both alive in 𝑡 years
𝑡𝑝𝑥𝑦 𝑡𝑝𝑥𝑦

00

Pr 𝑥 and 𝑦 are not both alive in 𝑡 years
𝑡𝑞𝑥𝑦 𝑡𝑝𝑥𝑦

01 + 𝑡𝑝𝑥𝑦
02

+ 𝑡𝑝𝑥𝑦
03

Pr 𝑥 dies before 𝑦 and within 𝑡 years
𝑡𝑞𝑥𝑦

1

 
0

𝑡

𝑟𝑝𝑥𝑦
00 𝜇𝑥+𝑟:𝑦+𝑟

02 𝑑𝑟

Pr 𝑥 dies after 𝑦 and within 𝑡 years
𝑡𝑞𝑥𝑦

2

 
0

𝑡

𝑟𝑝𝑥𝑦
01 𝜇𝑥+𝑟

13 𝑑𝑟

Pr at least one of 𝑥 and 𝑦 is alive in 𝑡 years
𝑡𝑝𝑥𝑦 𝑡𝑝𝑥𝑦

00 + 𝑡𝑝𝑥𝑦
01

+ 𝑡𝑝𝑥𝑦
02

Pr 𝑥 and 𝑦 are both dead in 𝑡 years
𝑡𝑞𝑥𝑦 𝑡𝑝𝑥𝑦

03



The subscript 𝑥𝑦 or 𝑥𝑦 is the status. The q-type probabilities are

associated with the failure of the status – the joint life status 𝑥𝑦 fails on

the first death of (x) and (y) , and the last survivor status 𝑥𝑦 fails on the

last death of (x) and (y) .

The random variables of interest are 𝑇𝑥 and 𝑇𝑦, the future lifetimes of

two lives, one aged x and the other aged y.



So far we have described annuity and assurance functions which depend

upon the death or survival of a single life aged x.

We now consider annuity and assurance functions which depend upon the

death or survival of two lives.

The random variables of interest are 𝑇𝑥 and 𝑇𝑦, the future lifetimes of the

two lives, one aged x and the other aged y.

Assumption:

𝑇𝑥 and 𝑇𝑦 are independent random variables.



5.8.2 Joint life functions

Def.14

The random variable 𝑇𝑥𝑦 measures the joint lifetime of (x) and (y) i.e. the

time while both (x) and (y) remain alive, which is the time until the first

death of (x) and (y), that is

𝑇𝑥𝑦 = min{𝑇𝑥 ,𝑇𝑦}

Def. 15

The cumulative distribution function of 𝑇𝑥𝑦 is

𝐹𝑇𝑥𝑦 𝑡 = 𝑃𝑟 𝑇𝑥𝑦 ≤ 𝑡 .

Exercise:

Prove that 𝐹𝑇𝑥𝑦 𝑡 = 1 − 𝑡𝑝𝑥𝑡𝑝𝑦

and that the density function of 𝑇𝑥𝑦 is 𝑓𝑇𝑥𝑦 𝑡 = 𝑡𝑝𝑥𝑡𝑝𝑦 𝜇𝑥+𝑡 + 𝜇𝑦+𝑡

(Hint: recall that
𝑑

𝑑𝑡 𝑡
𝑝𝑥 = −𝑡𝑝𝑥𝜇𝑥+𝑡)



Life table functions are an aid to find the solutions of actuarial

problems involving a single life.

In a similar way it is helpful to develop the joint life functions to

help in the numerical evaluation of expressions which are the

solution to problems involving more than one life.

𝑡𝑝𝑥𝑦 = 𝑡𝑝𝑥 𝑡𝑝𝑦 =
𝑙𝑥+𝑡
𝑙𝑥

𝑙𝑦+𝑡

𝑙𝑦
=
𝑙𝑥+𝑡:𝑦+𝑡

𝑙𝑥𝑦
, 𝑙𝑥+𝑡:𝑦+𝑡 = 𝑙𝑥+𝑡𝑙𝑦+𝑡; 𝑙𝑥𝑦

= 𝑙𝑥𝑙𝑦
𝑑𝑥𝑦 = 𝑙𝑥𝑦 − 𝑙𝑥+1:𝑦+1

𝑞𝑥𝑦 =
𝑑𝑥𝑦
𝑙𝑥𝑦



The force of failure of the joint life status can be derived in the

usual way

𝜇𝑥+𝑡:𝑦+𝑡 = −

𝑑 𝑙𝑥+𝑡:𝑦+𝑡
𝑑𝑡

𝑙𝑥+𝑡:𝑦+𝑡
= −

𝑑 𝑡𝑝𝑥𝑦
𝑑𝑡

𝑡𝑝𝑥𝑦

Exercise:

Prove that 𝜇𝑥+𝑡:𝑦+𝑡 = 𝜇𝑥+𝑡 + 𝜇𝑦+𝑡.



Remark 16: this relationship is additive in contrast to 

the previous relationships which were multiplicative, 

and that there is no “simple” relationship for 𝑑𝑥𝑦.

Further,

𝑓𝑇𝑥𝑦 𝑡 = 𝑡𝑝𝑥𝑡𝑝𝑦 𝜇𝑥+𝑡 + 𝜇𝑦+𝑡 = 𝑡𝑝𝑥𝑦𝜇𝑥+𝑡:𝑦+𝑡.



Def. 17:

The discrete random variable which measures the curtate joint

future lifetime of 𝑥 and 𝑦 is 𝐾𝑥𝑦 = integer part of 𝑇𝑥𝑦.

Exercise:

Justify that the probability function of 𝐾𝑥𝑦 is 𝑃𝑟 𝐾𝑥𝑦 = 𝑘 =

𝑃𝑟 𝑘 ≤ 𝑇𝑥𝑦 < 𝑘 + 1 = 𝑘𝑝𝑥𝑦 − 𝑘+1𝑝𝑥𝑦
Justify that the probability function of 𝐾𝑥𝑦 is also given by

𝑃𝑟 𝐾𝑥𝑦 = 𝑘 = 𝑘| 𝑞𝑥𝑦 = 𝑘𝑝𝑥𝑦 × 𝑞𝑥+𝑘:𝑦+𝑘 .

Then

𝑃𝑟 𝐾𝑥𝑦 ≤ 𝑘 = 𝑃𝑟 integer part of 𝑇𝑥𝑦 ≤ 𝑘

=𝑃𝑟 integer part of min{𝑇𝑥 ,𝑇𝑦} ≤ 𝑘

= 

𝑡=0

𝑘

𝑡𝑝𝑥𝑡𝑝𝑦 1 − 𝑝𝑥+𝑡𝑝𝑦+𝑡



Remark 18:

The joint life table functions 𝑙𝑥𝑦 , 𝑑𝑥𝑦 , 𝑞𝑥𝑦 and 𝜇𝑥𝑦 are

not tabulated in the “Formulae and Tables for

Examinations”. However, these functions can be

evaluated using the tabulated single life functions.



Example:

Question 8.6 (CR CT5)





SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE 22

MASTER IN ACTUARIAL SCIENCE



5.8.3 Last survivor functions

Def. 19

The random variable 𝑇𝑥𝑦 measures the time until the last death of (x) and

(y) i.e. the time while at least one of (x) and (y) remains alive, that is 𝑇𝑥𝑦 =

max{𝑇𝑥 ,𝑇𝑦 }

Def. 20

The cumulative distribution function of 𝑇𝑥𝑦 is

𝐹𝑇𝑥𝑦 𝑡 = 𝑃𝑟 𝑇𝑥𝑦 ≤ 𝑡 .

Exercise:

Prove that 𝐹𝑇𝑥𝑦 𝑡 = 𝐹𝑇𝑥 𝑡 + 𝐹𝑇𝑦 𝑡 − 𝐹𝑇𝑥𝑦 𝑡 and that the density

function of 𝑇𝑥𝑦 is 𝑓𝑇𝑥𝑦 𝑡 = 𝑓𝑇𝑥 𝑡 + 𝑓𝑇𝑦 𝑡 − 𝑓𝑇𝑥𝑦 𝑡

= 𝑡𝑝𝑥𝜇𝑥+𝑡 + 𝑡𝑝𝑦𝜇𝑦+𝑡 − 𝑡𝑝𝑥𝑡𝑝𝑦 𝜇𝑥+𝑡 + 𝜇𝑦+𝑡 ,

𝑡𝑝𝑥 = 𝑆𝑥 𝑡 = 𝑒−  𝑥
𝑥+𝑡

𝜇𝑟𝑑𝑟 = 𝑒−  0
𝑡
𝜇𝑥+𝑠𝑑𝑠 …



𝐹𝑇𝑥𝑦 𝑡 = 𝑃𝑟 𝑇𝑥𝑦 ≤ 𝑡

= 𝑃 max{𝑇𝑥 ,𝑇𝑦} ≤ t =𝑃 𝑇𝑥 ≤ 𝑡, 𝑇𝑦 ≤ 𝑡 = 𝑃 𝑇𝑥 ≤ 𝑡 𝑃 𝑇𝑦 ≤ 𝑡

= 𝑡𝑞𝑥 𝑡𝑞𝑦 = 1 − 𝑡𝑝𝑥 1 − 𝑡𝑝𝑦

= 1 − 𝑡𝑝𝑥 − 𝑡𝑝𝑦 + 𝑡𝑝𝑥 𝑡𝑝𝑦

= 1 − 𝑡𝑝𝑥 + 𝟏 − 𝑡𝑝𝑦 − 𝟏 − 𝑡𝑝𝑥 𝑡𝑝𝑦

= 𝐹𝑇𝑥 𝑡 + 𝐹𝑇𝑦 𝑡 − 𝐹𝑇𝑥𝑦 𝑡



Def. 21:

The discrete random variable which measures the curtate last

survivor lifetime of 𝑥 and 𝑦 is

𝐾𝑥𝑦 = integer part of 𝑇𝑥𝑦

Exercise:

Prove that the probability function of 𝐾𝑥𝑦 is

𝑃𝑟 𝐾𝑥𝑦 = 𝑘 = 𝑃𝑟 𝑘 ≤ 𝑇𝑥𝑦 < 𝑘 + 1 = 𝑘|𝑞𝑥𝑦 = 𝑘|𝑞𝑥 +

𝑘|𝑞𝑦 − 𝑘|𝑞𝑥𝑦.



Remark 22:

• The cumulative distribution function of 𝑇𝑥𝑦 is

𝑃 𝑇𝑥𝑦 ≤ 𝑡 = 1 − 𝑡𝑝𝑥 − 𝑡𝑝𝑦 + 𝑡𝑝𝑥 𝑡𝑝𝑦

• The survival function is

𝑃 𝑇𝑥𝑦 > 𝑡 = 𝑡𝑝𝑥 + 𝑡𝑝𝑦 − 𝑡𝑝𝑥 𝑡𝑝𝑦

• The survival function can be factorised into

𝑡𝑝𝑥 𝑡𝑝𝑦 + 1 − 𝑡𝑝𝑥 𝑡𝑝𝑦 + 1 − 𝑡𝑝𝑦 𝑡𝑝𝑥
where each of the three terms corresponds to one of the mutually exclusive and

exhaustive events which result in the last survivor of (x) and (y) living for at least t

years i.e.

• both (x) and (y) alive after t years

• (x) dead, but (y) alive after t years

• (x) alive, but (y) dead after t years

These probabilities can be evaluated directly.

• The probability of the complementary event, that both lives will die within t

years, is 𝑃 𝑇𝑥𝑦 ≤ 𝑡 = 1 − 𝑡𝑝𝑥 1 − 𝑡𝑝𝑦



Remark 23:

It has already been derived that

𝐹𝑇𝑥𝑦 𝑡 = 𝐹𝑇𝑥 𝑡 + 𝐹𝑇𝑦 𝑡 − 𝐹𝑇𝑥𝑦 𝑡 = 1 − 𝑡𝑝𝑥 − 𝑡𝑝𝑦 + 𝑡𝑝𝑥 𝑡𝑝𝑦

and that

𝑓𝑇𝑥𝑦 𝑡 = 𝑓𝑇𝑥 𝑡 + 𝑓𝑇𝑦 𝑡 − 𝑓𝑇𝑥𝑦 𝑡

= 𝑡𝑝𝑥𝜇𝑥+𝑡 + 𝑡𝑝𝑦𝜇𝑦+𝑡 − 𝑡𝑝𝑥𝑦𝜇𝑥+𝑡:𝑦+𝑡

and so it seems that all last survivor functions can be expressed in

terms of single life and joint life functions. This is true and provides

a method of evaluating such functions without the need to develop

any additional functions to help in computation.



Example: Question 8.7 (CR CT5)





Note that for joint life statuses it is often easier to work with p-type

functions because

𝑡𝑝𝑥𝑦 = 𝑡𝑝𝑥 × 𝑡𝑝𝑦.

For last survivor statuses is is often easier to work with q-type

functions because

𝑡𝑞𝑥𝑦 = 𝑡𝑞𝑥 × 𝑡𝑞𝑦.



This is the result of the relationship between the joint lifetime and

last survivor lifetime random variables:

𝑇𝑥𝑦 +𝑇𝑥𝑦 = min {𝑇𝑥 ,𝑇𝑦}+ max{𝑇𝑥 ,𝑇𝑦}=𝑇𝑥 + 𝑇𝑦
𝐾𝑥𝑦 +𝐾𝑥𝑦 = min {𝐾𝑥 ,𝐾𝑦}+ max{𝐾𝑥 ,𝐾𝑦}=𝐾𝑥 + 𝐾𝑦

This last equation gives the result 𝐾𝑥𝑦 = 𝐾𝑥 + 𝐾𝑦 − 𝐾𝑥𝑦 and

𝑃𝑟 𝐾𝑥𝑦 = 𝑘 = 𝑃𝑟 𝐾𝑥 = 𝑘 + 𝑃𝑟 𝐾𝑦 = 𝑘 − 𝑃𝑟 𝐾𝑥𝑦 = 𝑘 ,

another way to write

𝑃𝑟 𝐾𝑥𝑦 = 𝑘 = 𝑘|𝑞𝑥𝑦 = 𝑘|𝑞𝑥 + 𝑘|𝑞𝑦 − 𝑘|𝑞𝑥𝑦.

So curtate last survivor functions can be evaluated from the

corresponding joint life and single life functions.



5.8.4 Present values of joint life and last survivor assurances

Consider an assurance under which the benefit (of 1) is paid

immediately on the ending (failure) of a status u. This status u could

be any joint lifetime or last survivor status, 𝑥𝑦 or 𝑥𝑦. Let 𝑇𝑢 be a

(continuous) random variable representing the future lifetime of the

status u and let 𝑓𝑇𝑢(𝑡) be the probability density function of 𝑇𝑢.

The present value of the assurance can be represented by the random

variable

 𝑍𝑢 = 𝑣𝑖
𝑇𝑢

where i is the valuation rate of interest.



The expected value of  𝑍𝑢 is denoted by  𝐴𝑢,

 𝐴𝑢 = 𝐸  𝑍𝑢 =  
0

∞

𝑣𝑖
𝑡 𝑓𝑇𝑢(𝑡)𝑑𝑡

And the variance can be written as

𝑉𝑎𝑟  𝑍𝑢 = 𝐸  𝑍𝑢
2 − 𝐸  𝑍𝑢

2 =  
0

∞

𝑣2𝑡 𝑓𝑇𝑢 𝑡 𝑑𝑡 −  𝐴𝑢
2

= 2  𝐴𝑢 −  𝐴𝑢
2

Where 2  𝐴𝑢 is evaluated at a valuation rate of interest of 𝑖 ∗ =

2𝑖 + 𝑖 2.



If the assurance benefit is paid at the end of the year

in which the status finishes, then a (discrete) random

variable 𝐾𝑢 can be used, with a present value

function. The present value of the assurance can be

represented by the random variable

𝑍𝑢 = 𝑣𝑖
𝐾𝑢+1,

where 𝑖 is the valuation rate of interest.



5.8.4.1 present values of joint life assurances

When 𝑢 = 𝑥𝑦, the mean and variance of the present value of an 

assurance payable immediately on the failure of the joint lifetime 

of (x) and (y) are

 𝐴𝑥𝑦 = 𝐸  𝑍𝑥𝑦 =  
0

∞

𝑣𝑖
𝑡

𝑡𝑝𝑥 𝑡𝑝𝑦

𝑡𝑝𝑥𝑦

𝜇𝑥+𝑡 + 𝜇𝑦+𝑡
𝜇𝑥+𝑡:𝑦+𝑡

𝑑𝑡

𝑉𝑎𝑟  𝑍𝑥𝑦 = 𝐸  𝑍𝑥𝑦
2 − 𝐸  𝑍𝑥𝑦

2
= 2  𝐴𝑥𝑦 −  𝐴𝑥𝑦

2

where 2  𝐴𝑥𝑦 is evaluated at a valuation rate of interest of 𝑖 ∗ =

2𝑖 + 𝑖 2.



A similar analysis for 𝐾𝑥𝑦 gives the mean and variance of the

present value of the joint life assurance with sum assured payable

at the end of the year of failure.

𝐴𝑥𝑦 = 𝐸 𝑍𝑥𝑦 =  

𝑘=0

∞

𝑣𝑖
𝑘+1

𝑘|𝑞𝑥𝑦

𝑉𝑎𝑟 𝑍𝑥𝑦 = 𝐸 𝑍𝑥𝑦
2 − 𝐸 𝑍𝑥𝑦

2
= 2𝐴𝑥𝑦 − 𝐴𝑥𝑦

2



5.8.4.2 present values of last survivor assurances

When 𝑢 = 𝑥𝑦, the mean and variance of the present value of an

assurance payable immediately on the death of the last survivor of

(x) or (y) are

 𝐴𝑥𝑦 = 𝐸  𝑍𝑥𝑦 =  
0

∞

𝑣𝑖
𝑡

𝑡𝑝𝑥𝜇𝑥+𝑡 + 𝑡𝑝𝑦𝜇𝑦+𝑡 − 𝑡𝑝𝑥𝑦𝜇𝑥+𝑡:𝑦+𝑡 𝑑𝑡

=  𝐴𝑥 +  𝐴𝑦 −  𝐴𝑥𝑦

𝑉𝑎𝑟  𝑍𝑥𝑦 = 𝐸  𝑍𝑥𝑦
2 − 𝐸  𝑍𝑥𝑦

2

= 2  𝐴𝑥 +
2  𝐴𝑦 −

2  𝐴𝑥𝑦 −  𝐴𝑥 +  𝐴𝑦 −  𝐴𝑥𝑦
2

Where 2  𝐴𝑥𝑦 is evaluated at a valuation rate of interest of 𝑖 ∗ =

2𝑖 + 𝑖 2. Again, last survivor functions can be evaluated in terms

of single and joint life functions.



A similar analysis for 𝐾𝑥𝑦 gives the mean and variance of the

present value of the joint life assurance with sum assured payable

at the end of the year of failure.

𝐴𝑥𝑦 = 𝐸 𝑍𝑥𝑦 = 𝐴𝑥 + 𝐴𝑦 − 𝐴𝑥𝑦

𝑉𝑎𝑟 𝑍𝑥𝑦 = 𝐸 𝑍𝑥𝑦
2 − 𝐸 𝑍𝑥𝑦

2
= 2𝐴𝑥𝑦 − 𝐴𝑥𝑦

2
=

2𝐴𝑥 +
2𝐴𝑦 −

2𝐴𝑥𝑦 − 𝐴𝑥 + 𝐴𝑦 − 𝐴𝑥𝑦
2



5.8.5 present values of joint life and last survivor annuities

Consider an annuity under which the benefit (of 1) is paid

continuously so long as a status u continues. This status u could be

any joint lifetime or last survivor status, 𝑥𝑦 or 𝑥𝑦.

The present value of these annuity payments can be represented by

the random variable  𝑎𝑇𝑢| with expected value (EPV)

 𝑎𝑢 = 𝐸  𝑎𝑇𝑢| =  
0

∞

 𝑎 𝑡| 𝑓𝑇𝑢 𝑡 𝑑𝑡 = 𝐸
1 − 𝑣𝑇𝑢

𝛿
=
1 − 𝐸 𝑣𝑇𝑢

𝛿

=
1 −  𝐴𝑢
𝛿



The variance can be expressed in a similar way

𝑉𝑎𝑟  𝑎𝑇𝑢| = 𝑉𝑎𝑟
1−𝑣𝑇𝑢

𝛿
=

1

𝛿2
𝑉𝑎𝑟 𝑣𝑇𝑢 =

1

𝛿2
2  𝐴𝑢 −  𝐴𝑢

2 .

For instance,

 𝑎𝑥𝑦 =  𝑎𝑥 +  𝑎𝑦 −  𝑎𝑥𝑦 .

The payment stream for the last survivor annuity is equivalent to

continuous payments at unit rate per year to both husband and wife

while each of them is alive minus a continuous payment at unit rate

per year while both are alive. This gives a net payment at unit rate

per year while at least one of them is alive, which is what we want.



In advance In arrear

Random Variable 

(discrete)
 𝑎𝐾𝑢+1| 𝑎𝐾𝑢|

Mean  𝑎𝑢 =
1 − 𝐴𝑢
𝑑

𝑎𝑢 =
1 − 𝑑 − 𝐴𝑢

𝑑

Variance
1

𝑑2
2𝐴𝑢 − 𝐴𝑢

2
1

𝑑2
2𝐴𝑢 − 𝐴𝑢

2



The means and variances of the present values of annuities

payable in advance and in arrear can be evaluated

according to the table above.

These results can be used to determine the means and

variances for u=xy (the joint life annuity) and u=𝑥𝑦 (the last

survivor annuity).



5.8.6 EPV of joint life and last survivor assurances and annuities

which depend upon term

5.8.6.1 EPV of joint life assurances and annuities which also

depend upon term

Joint life assurances which are dependent on a fixed term of n

years can be term assurances or endowment assurances.

Their expected present values if they are paid immediately on

death can be expressed as:

 𝐴 𝑥𝑦:𝑛|
1 =  0

𝑛
𝑣𝑡 𝑡𝑝𝑥𝑦𝜇𝑥+𝑡:𝑦+𝑡 𝑑𝑡 (term assurance)

 𝐴𝑥𝑦:𝑛| =
 𝐴 𝑥𝑦:𝑛|
1 + 𝐴𝑥𝑦:𝑛|

1 , 𝐴𝑥𝑦:𝑛|
1 = 𝑛𝑝𝑥𝑦𝑣

𝑛 (endowment assurance)



The bracket used in the notation for the term assurance indicates

that the joint status must end within the fixed term of n years for

the benefit to be payable.

The expected present value of the temporary joint life annuity

payable continuously can be written as

 𝑎𝑥𝑦:𝑛| =  

0

𝑛

𝑣𝑡 𝑡𝑝𝑥𝑦 𝑑𝑡

Similar expressions involving summation operators can be

developed if assurances are paid at the end of the year of death or if

annuities are payable annually in advance or in arrear.



5.8.6.2 EPV of last survivor assurances and annuities which also

depend upon term

Last survivor assurances which are dependent on a fixed term of n

years can be term assurances or endowment assurances. Their

expected present values can be expressed in terms of single and

joint life functions by making use of the results set out before.

 𝐴𝑥𝑦:𝑛|
1 =  𝐴𝑥:𝑛|

1 +  𝐴𝑦:𝑛|
1 −  𝐴 𝑥𝑦:𝑛|

1

 𝐴𝑥𝑦:𝑛| =
 𝐴𝑥:𝑛| +

 𝐴𝑦:𝑛| −
 𝐴𝑥𝑦:𝑛|



The expected present value of the temporary last survivor annuity

payable continuously can be written as

 𝑎𝑥𝑦:𝑛| =  𝑎𝑥:𝑛| +  𝑎𝑦:𝑛| −  𝑎𝑥𝑦:𝑛|

Similar expressions involving summation operators can be

developed if assurances are paid out at the end of the year of

death or if annuities are payable annually in advance or in arrear.



5.8.7 EPV of joint life and last survivor annuities payable m times a

year

For a single life status x the approximation

 𝑎𝑥
𝑚

≈  𝑎𝑥 −
𝑚 − 1

2𝑚
has been derived. Then

𝑎𝑥
𝑚

=  𝑎𝑥
𝑚

−
1

𝑚
≈   𝑎𝑥

1+𝑎𝑥

−
𝑚−1

2𝑚
−

1

𝑚
, i.e.

𝑎𝑥
𝑚

≈ 𝑎𝑥 +
𝑚 − 1

2𝑚

It is important to note that the nature of the above approximation

means that the single life status x can equally be replaced by any

life status, “u” say.



𝑎𝑥𝑦
𝑚

≈ 𝑎𝑥𝑦 +
𝑚 − 1

2𝑚

𝑎𝑥𝑦
𝑚

≈ 𝑎𝑥 + 𝑎𝑦 − 𝑎𝑥𝑦 +
𝑚 − 1

2𝑚

𝑎
𝑥𝑦:𝑛|
𝑚

≈ 𝑎𝑥𝑦:𝑛| +
𝑚 − 1

2𝑚
1 − 𝑛𝑝𝑥𝑦𝑣

𝑛

𝑎
𝑥𝑦:𝑛|
𝑚

≈ 𝑎𝑥:𝑛| + 𝑎𝑦:𝑛| − 𝑎𝑥𝑦:𝑛|

+
𝑚 − 1

2𝑚
1 − 𝑛𝑝𝑥 𝑣

𝑛 + 𝑛𝑝𝑦 𝑣
𝑛 − 𝑛𝑝𝑥𝑦𝑣

𝑛



SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE 23

MASTER IN ACTUARIAL SCIENCE



1. Characterise the policy with EPV 88 000  𝐴50:50 and calculate this EPV given that

𝜇 = 0.04 throughout the first life and 𝜇 = 0.03 throughout the second life. The force

of interest is 𝛿 = 5% per annum.

Solution

88 000  𝐴50:50 is the EPV of an assurance paying 88 000 immediately on the death of the 

last survivor of two independent lives currently aged 50.

 𝐴𝑥𝑦 =  𝐴𝑥 +  𝐴𝑦 −  𝐴𝑥𝑦

 𝐴𝑥 =  
0

∞

𝑣𝑡 𝑡𝑝𝑥𝜇𝑥+𝑡 𝑑𝑡;  𝐴𝑦 =  
0

∞

𝑣𝑡 𝑡𝑝𝑦𝜇𝑦+𝑡 𝑑𝑡;  𝐴𝑥𝑦 =  
0

∞

𝑣𝑡 𝑡𝑝𝑥𝑡𝑝𝑦

𝑡𝑝𝑥𝑦

𝜇𝑥+𝑡 + 𝜇𝑦+𝑡
𝜇𝑥+𝑡:𝑦+𝑡

𝑑𝑡

 𝐴50 =  
0

∞

𝑒−  0
𝑡
0.05𝑑𝑟𝑒−  0

𝑡
0.04𝑑𝑠 0.04 𝑑𝑡 = 0. (4)

 𝐴50 =  
0

∞

𝑒−  0
𝑡
0.05𝑑𝑟𝑒−  0

𝑡
0.03𝑑𝑠 0.03 𝑑𝑡 = 0.375

 𝐴50:50 =  
0

∞

𝑒−  0
𝑡
0.05𝑑𝑟𝑒−  0

𝑡
0.07𝑑𝑠 0.07 𝑑𝑡 = 0.58(3)

88 000  𝐴50:50 = 88 000 0. 4 + 0.375 − 0.58 3 = 20 777. (7)



2. A single premium annuity policy is now issued to a male aged exactly 60 and

a woman aged exactly 50. The annuity of 30 000 payable annually in arrear

commences immediately and continues while at least one of the lives is alive.

a) Calculate the single premium using the following basis:

Mortality: PMA92C20 for the male life and PFA92C20 for the female

life. The lives are independent with respect to mortality.

Interest: 4% per annum.

Expenses: initial expenses of 150; annuity expenses of 1% of the

annuity payment, while the annuity is being paid.

b) Calculate the probability that the insurance company makes a profit on the

contract given that it sold the annuity for 600 000.



Solution
a)

𝑃 = 150 + 1.01 × 30 000a60:50 ≈ 150 + 30 300 a60 + a50 − a60:50 =

150 + 30 300 14.632 + 18.539 − 14.161 = 576 153.
b)

𝑃 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃 150 + 30 300𝑎𝐾60:50| < 600 000 = 𝑃 𝑎𝐾60:50| < 19.797

= 𝑃
1 − 𝑣𝐾60:50

0.04
< 19.797

= 𝑃
1 − 𝑣

𝐾60:50

0.04
< 19.797 = 𝑃 𝑣

𝐾60:50 > 0.20812 = 𝑃 𝐾60:50  log 𝑣

<0

> log 0.20812

= 𝑃 𝐾60:50 <
log 0.20812

log
1

1.04

= 𝑃 𝐾60:50 <
log 0.20812

log
1

1.04

= 𝑃 𝐾60:50 < 40.02 = 𝑃 𝐾60:50 < 41

= 41𝑞60 41𝑞50 = 1 −
𝑙101
𝑙60

× 1 −
𝑙91
𝑙50

= 1 −
171 171

9 826 131
× 1 −

3 706 149

9 947 452

= 0.6165.



3. A male life aged 58 exact and a female life aged 55 exact take out a

whole life assurance policy. The policy pays a sum assured of 150 000

immediately on first death. Premiums are payable for a maximum period of

seven years, half-yearly in advance, ceasing on first death. Calculate the

half-yearly premium payable. Note that 𝐴𝑥𝑦 = 1 − 𝑑  𝑎𝑥𝑦 and

7𝐸58:55 = 0.73470.

Basis:

Mortality: PMA92C20 (male life), PFA92C20 (female life)

Rate of interest: 4% per annum

Expenses: Nil



𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑃 = half-yearly premium

150 000  𝐴58:55 − 2𝑃  𝑎
58:55:  7|
2

= 0 ⇒ 𝑃 =
150 000  𝐴58:55

2  𝑎
58:55:  7|

2

𝐴58:55 = 1 − 𝑑  𝑎58:55 = 1 −
0.04

1.04
15.306 = 0.41131

 𝑎
58:55:  7|
2

=  𝑎58:55
2

− 7𝐸58:55  𝑎65:62
2

=  𝑎58:55 −
1

4
− 0.7347  𝑎65:62

12.427

−
1

4

= 6.1096

Then, 𝑃 =
150 000×1.04

1
2×0.41131

2×6.1096
= 5149.173



5. MULTI-STATE POLICIES (Dickson et al. – Chap. 8, pp. 230-

289)

5.8 Joint life status and last survivor status

(…)

Contingent assurances – which are payable on the death of one

life, contingent upon another life being in a specified state (alive

or dead)

Reversionary annuities – which are payable to one life from the

moment of death of another life.



See also pp. 162 and ff CM1 Core Reading (2019 ed.)

5.8.8 EPV of contingent assurances and reversionary annuities

5.8.8.1Contingent probabilities of death

So far events have been studied which depend on the joint lifetime

𝑥𝑦 or last survivor lifetime 𝑥𝑦 of two lives. One can also look at

events which depend on the order in which the deaths occur:

𝑥𝑦
1 : the event that (x) is the first to die of two lives (x) and (y).

𝑥𝑦
2 : the event that (x) is the second to die of two lives (x) and (y).

Events which depend upon the order in which the lives die are

called contingent events.



𝑛𝑞𝑥𝑦
1 and 𝑛𝑞𝑥𝑦

2 are used to denote that probabilities that each of

these two events occurs in the next 𝑛 years. These probabilities can

be evaluated by an appropriate integration of the density functions of

the random variables 𝑇𝑥 and 𝑇𝑦

𝑛𝑞𝑥𝑦
1 = Pr 𝑥 dies before 𝑦 and within 𝑛 years

= Pr 𝑇𝑥 < 𝑇𝑦 ∧ 𝑇𝑥 ≤ 𝑛 =  
𝑡=0

𝑡=𝑛

 
𝑠=𝑡

𝑠=∞

𝑡𝑝𝑥 𝜇𝑥+𝑡 𝑠𝑝𝑦 𝜇𝑦+𝑠𝑑𝑠𝑑𝑡

𝑛𝑞𝑥𝑦
2 = Pr 𝑥 dies after 𝑦 and within 𝑛 years

= Pr 𝑇𝑦 < 𝑇𝑥 ≤ 𝑛 =  
𝑡=0

𝑡=𝑛

 
𝑠=0

𝑠=𝑡

𝑡𝑝𝑥 𝜇𝑥+𝑡 𝑠𝑝𝑦 𝜇𝑦+𝑠𝑑𝑠𝑑𝑡

Exercise: Derive that 𝑛𝑞𝑥𝑦
1 =  0

𝑛
𝑡𝑝𝑥𝑦𝜇𝑥+𝑡𝑑𝑡



Solution: 𝑛𝑞𝑥𝑦
1 = Pr 𝑥 dies before 𝑦 and within 𝑛 years =

Pr 𝑇𝑥 < 𝑇𝑦 ∧ 𝑇𝑥 ≤ 𝑛 =  
𝑡=0

𝑡=𝑛

 
𝑠=𝑡

𝑠=∞

𝑡𝑝𝑥 𝜇𝑥+𝑡 𝑠𝑝𝑦 𝜇𝑦+𝑠𝑑𝑠𝑑𝑡

=  
𝑡=0

𝑡=𝑛

𝑡𝑝𝑥 𝜇𝑥+𝑡  
𝑠=𝑡

𝑠=∞

𝑠𝑝𝑦 𝜇𝑦+𝑠𝑑𝑠

𝑡𝑝𝑦

𝑑𝑡

=  
𝑡=0

𝑡=𝑛

𝑡𝑝𝑥 𝜇𝑥+𝑡 𝑡𝑝𝑦 𝑑𝑡 =  
0

𝑛

𝑡𝑝𝑥𝑦𝜇𝑥+𝑡𝑑𝑡



Exercise:

Justify that 𝑛𝑞𝑥𝑦
2 = 𝑛𝑞𝑥 − 𝑛𝑞𝑥𝑦

1 , that is, “second

death” probabilities can always be expressed in terms

of “single death” and “first death” probabilities (this

provides a method of evaluating “second death”

probabilities).



Solution:

Straightforward, noting that (obviously, under this

framework)

𝑛𝑞𝑥 = 𝑛𝑞𝑥𝑦
1 + 𝑛𝑞𝑥𝑦

2 .

Similarly

𝑛𝑞𝑥𝑦
2 = 𝑛𝑞𝑦 − 𝑛𝑞𝑥𝑦

1



Exercise:

Justify that

𝑛𝑞𝑥𝑦
2 = 𝑛𝑞𝑥𝑦

1 − 𝑛𝑝𝑥 𝑛𝑞𝑦 ,

𝑛𝑞𝑥𝑦
1 = Pr 𝑦 dies before 𝑥 and within 𝑛 years

= Pr 𝑇𝑦 < 𝑇𝑥 ∧ 𝑇𝑦 ≤ 𝑛 .



Solution:

Also straightforward, noting that 

Pr 𝑥 dies after 𝑦 and within 𝑛 years

= Pr 𝑦 dies before 𝑥 and within 𝑛 years

−Pr 𝑦 dies within 𝑛 years and 𝑥 survives 𝑛 years

𝑛𝑞𝑥𝑦
2 ≠ 𝑛𝑞𝑥𝑦

1



5.8.8.2 EPV of contingent assurances

Contingent events depending on the future lifetime of two lives (x)

and (y) can be written in terms of the random variables 𝑇𝑥 and 𝑇𝑦.

The random variables representing the present value of contingent

assurances can be expressed as functions of these two random

variables.

For example the present value of a sum assured of 1 paid

immediately on the death of (x) provided that (y) is still alive can

be expressed as

 𝑍 =  
𝑣𝑖
𝑇𝑥 𝑖𝑓 𝑇𝑥 ≤ 𝑇𝑦
0 𝑖𝑓 𝑇𝑥 > 𝑇𝑦

where i is the valuation rate of interest.



Using similar methods to those used before, it follows that the

mean of  𝑍 is

𝐸  𝑍 =  𝐴1
𝑥𝑦

=  𝑡=0
𝑡=∞

𝑣𝑡 𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡𝑑𝑡,

as∞𝑞𝑥𝑦
1 =  𝑡=0

𝑡=∞
𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡𝑑𝑡.

The variance of  𝑍 is

𝑉𝑎𝑟  𝑍 = 2  𝐴1
𝑥𝑦

−  𝐴1
𝑥𝑦

2

where 2  𝐴1
𝑥𝑦

is evaluated at a valuation rate of interest 𝑖2 + 2𝑖.



These functions are usually evaluated by using numerical

methods to determine the values of the integrals. In some cases

joint and single life values obtained from tables can be useful in

conjunction with the following and similar relationships
 𝐴𝑥𝑦 =  𝐴1

𝑥𝑦

+  𝐴 1
𝑥𝑦

 𝐴𝑥 =  𝐴1
𝑥𝑦

+  𝐴2
𝑥𝑦

 𝐴𝑥:𝑥
1 =  𝐴𝑥:𝑥

1 = 0.5  𝐴𝑥:𝑥

 𝐴𝑥:𝑥
2 =  𝐴𝑥:𝑥

2 = 0.5  𝐴𝑥:𝑥
(In these last results we assume the two lives are of the same age

and subject to the same mortality model, although independent in

respect of mortality)



If the benefit is payable at the end of the policy year in which

the contingent event occurs then we can show that

𝐴1
𝑥𝑦

=  𝑘=0
∞ 𝑣𝑘+1 𝑘𝑝𝑥𝑦 𝑞𝑥+𝑘:𝑦+𝑘

1

with analogous expressions for the variance to those derived

for assurances payable immediately on the occurrence of the

contingent event.

The approximate relationship

 𝐴1
𝑥𝑦

≈ 1 + 𝑖
1
2 𝐴1

𝑥𝑦

Is still valid.



5.8.8.3 EPV of reversionary whole life annuities

The simplest form of a reversionary annuity is one that begins on the 

death of (x), if (y) is then alive, and continues during the lifetime of 

(y). The life (x) is called the counter or failing life, and the life (y) is 

called the annuitant. The random variable  𝑍 representing the present 

value of this reversionary annuity if it is payable continuously can be 

written as a function of the random variables 𝑇𝑥 and 𝑇𝑦 , where

 𝑍 =  
 𝑎𝑇𝑦| −  𝑎𝑇𝑥| 𝑖𝑓 𝑇𝑦 > 𝑇𝑥

0 𝑖𝑓 𝑇𝑦 ≤ 𝑇𝑥

 𝑎𝑥|𝑦 = 𝐸  𝑍 =  𝑎𝑦 −  𝑎𝑥𝑦 =
 𝐴𝑥𝑦 −  𝐴𝑦
𝛿

=  
𝑡=0

𝑡=∞

𝑣𝑡  𝑎𝑦+𝑡 𝑡𝑝𝑥𝑦𝜇𝑥+𝑡𝑑𝑡



If the annuity begins at the end of the year of death of (x)

and is then paid annually in arrear during the lifetime of

(y), the random variable, Z representing the present value

of the payments can be written as a function of 𝐾𝑥 and

𝐾𝑦 , where

𝑍 =  
𝑎𝐾𝑦| − 𝑎𝐾𝑥| 𝑖𝑓 𝐾𝑦 > 𝐾𝑥

0 𝑖𝑓 𝐾𝑦 ≤ 𝐾𝑥

𝑎𝑥|𝑦 = 𝐸 𝑍 = 𝑎𝑦 − 𝑎𝑥𝑦 =
𝐴𝑥𝑦 − 𝐴𝑦

𝑑



5.8.8.4 EPV of contingent assurances which depend

upon term

Only term assurances are meaningful in this context. The

expected present value of an assurance payable immediately on

the death of (x) within n years provided (y) is then alive can be

written

 𝐴1
𝑥𝑦:𝑛|

=  
𝑡=0

𝑡=𝑛

𝑣𝑡 𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡𝑑𝑡

with a similar expression involving summation operators if the

sum assured is payable at the end of the year of death.



5.8.8.5 EPV of reversionary annuities which depend

upon term

1. Annuity payable after a fixed term has elapsed:

A reversionary annuity in which the counter or failing status is a

fixed term of n years is exactly equivalent to a deferred life

annuity. The expected present value of an annuity which is paid

continuously can be written

 𝑎𝑛||𝑦 =  𝑎𝑦 −  𝑎𝑦:𝑛|

(by analogy with  𝑎𝑥|𝑦 =  𝑎𝑦 −  𝑎𝑥𝑦)



2. Annuity payable to (y) on the death of (x), but ceasing at time n:

A reversionary annuity that ceases in any event after n years i.e. is

payable to (y) after the death of (x) with no payment being made

after n years.

𝐸𝑃𝑉 =  𝑎𝑦:𝑛| −  𝑎𝑥𝑦:𝑛|
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3. Annuity payable to (y) on the death of (x), provided that (x) dies

within n years, and then continues until the death of (y)

A reversionary annuity in which the payment commences on the

death of (x) within n years and then continues until the death of (y).

𝐸𝑃𝑉 =  
𝑡=0

𝑡=𝑛

𝑣𝑡 𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡  𝑎𝑦+𝑡𝑑𝑡

=  𝑎𝑦 −  𝑎𝑥𝑦
 𝑎𝑥|𝑦

− 𝑣𝑛 𝑛𝑝𝑥𝑦  𝑎𝑦+𝑛 −  𝑎𝑥+𝑛:𝑦+𝑛
 𝑎𝑥+𝑛|𝑦+𝑛



4. Annuity payable to (y) on the death of (x), for a maximum of n years

A reversionary annuity in which the payment will:

• Begin on the death of (x) and

• Cease on the death of (y) or n years after the death of (x) (whichever

event occurs first)

𝐸𝑃𝑉 =  
𝑡=0

𝑡=∞

𝑣𝑡 𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡  𝑎𝑦+𝑡:𝑛|𝑑𝑡

=  𝑎𝑥|𝑦 − 𝑣𝑛 𝑛𝑝𝑦  𝑎𝑥|𝑦+𝑛 =  𝑎𝑦 −  𝑎𝑥𝑦 − 𝑣𝑛 𝑛𝑝𝑦  𝑎𝑥|𝑦+𝑛

=  𝑎𝑦 −  𝑎𝑥𝑦 − 𝑣𝑛 𝑛𝑝𝑦  𝑎𝑦+𝑛 −  𝑎𝑥:𝑦+𝑛

In this case, the n years of the term start counting on the death of (x). In

Case 2., the n years of the term start counting at t = 0 .



5. Annuity payable to (y) on the death of (x) and guaranteed for n

years (and then continues until the death of (y), in case (y) survives

the guaranteed period)

𝐸𝑃𝑉 =  
𝑡=0

𝑡=∞

𝑣𝑡 𝑡𝑝𝑥𝑦 𝜇𝑥+𝑡  𝑎  𝑛| + 𝑣𝑛 𝑛𝑝𝑦+𝑡  𝑎𝑦+𝑡+𝑛 𝑑𝑡

=  𝐴𝑥𝑦
1  𝑎  𝑛| + 𝑣𝑛 𝑛𝑝𝑦  𝑎𝑥|𝑦+𝑛

An useful result when both lives are aged x and subject to the

same mortality model:

 𝐴𝑥:𝑥
1 =  𝐴𝑥:𝑥

1 = 0.5  𝐴𝑥:𝑥



6. Annuity payable to (y) on the death of (x), and continuing for n years after

(y)’s death

𝐸𝑃𝑉 =  𝑎𝑥|𝑦 +  𝐴𝑥:𝑦
2  𝑎  𝑛|

The first term is the EPV of the benefit payable after the death of (x) while (y) is

still alive. The second term is the EPV of the annuity paid n years following the

death of (y), provided that (y) dies after (x).

An useful result when both lives are aged x and subject to the same mortality

model:

 𝐴𝑥:𝑥
2=  𝐴𝑥:𝑥

2 = 0.5  𝐴𝑥:𝑥



Similar expressions involving summation operators can be

developed if the annuity payments are made at annual intervals

from the date on which the counter status fails.



Example

A single premium special reversionary annuity policy is issued to a husband aged exactly

70 and a wife aged exactly 67. The annuity commences immediately on the death of the

first of the lives to die and is payable subsequently while the second life is alive, for a

maximum period of 20 years after the commencement date of the policy. The annuity, of

annual amount 24000, is payable annually in advance. Calculate the single premium

using the following basis:

Mortality: PMA92C20 for the male life and PFA92C20 for the female life. The lives are

independent with respect to mortality.

Interest: 4% per annum.

Expenses: initial expenses of 500 incurred at the outset; annuity expenses of 1.5% per

annum of the annuity payment, while the annuity is being paid.



Using the equivalence principle, the gross single premium is

𝑃 = 24 000  𝑎70:67:20|
ℎ𝑤 −  𝑎70:67:20|

ℎ𝑤 + 0.015 × 24 000  𝑎70:67:20|
ℎ𝑤 −  𝑎70:67:20|

ℎ𝑤 + 500

⇔ 𝑃

= 24 000  𝑎70:20|
ℎ +  𝑎67:20|

𝑤 − 2  𝑎70:67:20|
ℎ𝑤 + 0.015 × 24 000  𝑎70:20|

ℎ +  𝑎67:20|
𝑤 − 2  𝑎70:67:20|

ℎ𝑤

+ 500

 𝑎70:20|
ℎ =  𝑎70

ℎ − 𝑣20
𝑙90
ℎ

𝑙70
ℎ

 𝑎90
ℎ = 11.562 − 0.45639

2675.203

9218.134
× 4.527 = 11.562 − 0.5996

= 10.9624

 𝑎67:20|
𝑤 =  𝑎67

𝑤 − 𝑣20
𝑙87
𝑤

𝑙67
𝑤  𝑎87

𝑤 = 14.111 − 0.45639
5349.595

9605.483
× 6.582 = 14.111 − 1.673 = 12.438

 𝑎70:67:20|
ℎ𝑤 =  𝑎70:67

ℎ𝑤 − 𝑣20
𝑙90
ℎ

𝑙70
ℎ

𝑙87
𝑤

𝑙67
𝑤  𝑎90:87

ℎ = 10.233 − 0.45639 × 0.16163 × 3.528

= 10.233 − 0.2602 = 9.9728

𝑃

= 24 000 10.9624 + 12.438 − 2 × 9.9728
82 915.2

+ 0.015 × 24 000  𝑎70:20|
ℎ +  𝑎67:20|

𝑤 − 2  𝑎70:67:20|
ℎ𝑤

1243.728

+ 500 = 84 658.928.



5.8.8.6 EPV of reversionary annuities payable m

times a year

𝑎𝑥|𝑦
𝑚

= 𝑎𝑦
𝑚

− 𝑎𝑥𝑦
𝑚

≈ 𝑎𝑦 − 𝑎𝑥𝑦

𝑎
𝑦:𝑛|
𝑚

− 𝑎
𝑥𝑦:𝑛|
𝑚

≈ 𝑎𝑦:𝑛| − 𝑎𝑥𝑦:𝑛| +
𝑚 − 1

2𝑚 𝑛𝑝𝑥𝑦𝑣
𝑛 − 𝑛𝑝𝑦 𝑣

𝑛

In every case, similar expressions can be developed for annuities

payable in advance and, letting m → ∞, continuous annuities.



5.9 Multiple decrement models (competing risks, or competing

causes of decrement) revisited - Multiple decrement tables

A multiple decrement model is characterized by having a single

starting state and several exit states with a possible transition from the

starting state to any of the exit states, but no further transitions.

Assuming the transition intensities as functions of age 𝑥 are known, it

is possible to calculate 𝑡𝑝𝑥
00 and 𝑡𝑝𝑥

0𝑖 using numerical or analytic

integration.

A useful way of determining the probabilities of the various events is

to use a “multiple decrement table”.



Def. 1: A multiple decrement table is a computational tool for dealing

with a population subject to more than one independent decrement.

For example, a whole life assurance might be subject to surrender as

well as death.

Notation (extension of the single decrement life table approach):

𝑎𝑙 𝑥 = population at age x

α, β, γ, … the labels for the types of independent decrements to

which the population is subject.



𝑎𝑑 𝑥
𝑘 = number of lives removed due to decrement k,  𝑘 =

α, β, γ, …  

𝑎𝑞 𝑥
𝑘 =

𝑎𝑑 𝑥
𝑘

𝑎𝑙 𝑥
= dependent rate of decrement k, 𝑘 = α, β, γ, 

…  

𝑞𝑥
𝑘 = independent rate of decrement k, 𝑘 = α, β, γ, …  



Remark 2: In general, as the decrements are assumed to operate

independently (for instance, it is reasonable to believe that death

and surrender are independent decrements), the number of lives

removed due to decrement “k” will depend on the preceding

population 𝑎𝑙 𝑥 as well as the numbers removed by every other

decrement other than k.

The value of 𝑎𝑞 𝑥
𝑘 , the dependent rate of decrement k (𝑘 = α, β,

γ…) depends on the effect of the other decrements operating on

the population.

The value of 𝑞𝑥
𝑘 , the independent rate of decrement k (𝑘 = α, β,

γ…) results from assuming that the decrement k is operating in

isolation.



The dependent probability 𝑎𝑞 𝑥
𝑘 is the probability that a life aged

x in a particular state will be removed from that state between ages

x and 𝑥 + 1 by the decrement k, in the presence of all other

decrements (risks) in the population.

The independent probability 𝑞𝑥
𝑘 is the probability that a life aged x

in a particular state will be removed from that state between ages x

and 𝑥 + 1 by the decrement k, if k is the only decrement acting on

the population.

All dependent quantities are denoted in ( )s, with their

corresponding independent values being quoted without the

brackets.



Probabilities can be evaluated by numerical solution of the

Kolmogorov equations, as seen before. Those Kolmogorov

equations themselves require values for the transition intensities

and are not of much use in practice.

Another method is going to be seen next, using multiple decrement

tables.

The two methods are consistent.



Remark 3: The multiple decrement table is a numerical

representation of the development of the population, such that

𝑎𝑙 𝑥+1 = 𝑎𝑙 𝑥

− number of lives removed between ages x and x + 1 due to

decrement α

− number of lives removed between ages x and x + 1 due to

decrement β

− number of lives removed between ages x and x + 1 due to

decrement γ

− …

− number of lives removed between ages x and x + 1 due to

decrement 𝜑
Or

𝑎𝑙 𝑥+1 = 𝑎𝑙 𝑥 − 𝑎𝑑 𝑥
𝛼 − 𝑎𝑑 𝑥

𝛽
− 𝑎𝑑 𝑥

𝛾
−⋯− 𝑎𝑑 𝑥

𝜑



Although

𝑡 𝑎𝑝 𝑥 = 𝑡𝑝𝑥
𝛼

𝑡𝑝𝑥
𝛽
×⋯× 𝑡𝑝𝑥

𝜑

⇒ 𝑎𝑝 𝑥 = 𝑝𝑥
𝛼 × 𝑝𝑥

𝛽
×⋯× 𝑝𝑥

𝜑
,

It is usual to calculate the probability 𝑎𝑝 𝑥 departing from the

relationship

𝑎𝑙 𝑥+1 = 𝑎𝑙 𝑥 − 𝑎𝑑 𝑥
𝛼 − 𝑎𝑑 𝑥

𝛽
−⋯− 𝑎𝑑 𝑥

𝜑

⇒ 𝑎𝑝 𝑥 = 1 − 𝑎𝑞 𝑥
𝛼 − 𝑎𝑞 𝑥

𝛽
−⋯− 𝑎𝑞 𝑥

𝜑
, 

Dividing both sides of the equation by 𝑎𝑙 𝑥 .



A multiple decrement model is really just a special

case of a multiple state model.

For example, the probability that an individual

who is in State 0 at age x is in State j at age 𝑥 + 1

is denoted by 𝑎𝑞 𝑥
𝑗

or 𝑝𝑥
0𝑗
.

Another example: both 𝑎𝑝 𝑥 and 𝑝𝑥
00 denote the

probability that a life in State 0 at age x is in State

0 at age 𝑥 + 1.
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CASE 1:

Assuming that:

• There are m decrements which are (jointly) uniformly distributed over

the year of age 𝑥, 𝑥 + 1 in the multiple decrement table.

• The m decrements are independent, that is, the rate of decrement from

cause j is independent from the rate of decrement from cause i. (This is the

linking assumption between single and multiple decrement tables).

The formula for obtaining independent rates from dependent rates

is 𝑞𝑥
𝑘 =

𝑎𝑞 𝑥
𝑘

1−
1

2
𝑎𝑞 𝑥

−𝑘
=

𝑎𝑑 𝑥
𝑘

𝑎𝑙 𝑥−
1

2
𝑎𝑑 𝑥

−𝑘
,

where 𝑎𝑞 𝑥
−𝑘 is the probability that a life aged x exact leaves the population 

over the next year of age due to all causes except cause 𝑘;Thus, if the causes

−k are eliminated, each one of these lives will be exposed to decrement from

cause k for an average of ½ year in (x, x+1).



For two decrements, 𝛼 and 𝛽: 

𝑞𝑥
𝛼 =

𝑎𝑞 𝑥
𝛼

1−
1

2
𝑎𝑞 𝑥

𝛽 and  𝑞𝑥
𝛽
=

𝑎𝑞 𝑥
𝛽

1−
1

2
𝑎𝑞 𝑥

𝛼
.

[From here we derive that 𝑎𝑞 𝑥
𝛼=

𝑞𝑥
𝛼 1−

1

2
𝑞𝑥
𝛽

1−
1

4
𝑞𝑥
𝛼𝑞𝑥

𝛽 and 𝑎𝑞 𝑥
𝛽
=

𝑞𝑥
𝛽
1−

1

2
𝑞𝑥
𝛼

1−
1

4
𝑞𝑥
𝛼𝑞𝑥

𝛽 ]

For three decrements, 𝛼, 𝛽 and 𝛾:

𝑞𝑥
𝛼 =

𝑎𝑞 𝑥
𝛼

1−
1

2
𝑎𝑞 𝑥

𝛽
+ 𝑎𝑞 𝑥

𝛾 ,  𝑞𝑥
𝛽
=

𝑎𝑞 𝑥
𝛽

1−
1

2
𝑎𝑞 𝑥

𝛼+ 𝑎𝑞 𝑥
𝛾 and  

𝑞𝑥
𝛾
=

𝑎𝑞 𝑥
𝛾

1 −
1
2

𝑎𝑞 𝑥
𝛼 + 𝑎𝑞 𝑥

𝛽
.

These formulae enable the underlying single decrement tables to be obtained from an

estimated multiple decrement table.















CASE 2 (page 35 orange book):

Assuming that:

• There are m decrements 𝜶,𝜷, 𝜸,… , 𝝉, 𝝋 , and each one is

uniformly distributed over each year of age in the single

decrement table.
• The m decrements are independent.

Then, for decrement 𝛼 (and, an a similar way, for any other

decrement)

𝑎𝑞 𝑥
𝛼 =

𝑎𝑑 𝑥
𝛼

𝑎𝑙 𝑥
=  0

1 𝑎𝑙 𝑥+𝑡

𝑎𝑙 𝑥
𝑎𝜇 𝑥+𝑡

𝛼 𝑑𝑡 =  0
1
𝑡 𝑎𝑝 𝑥 𝜇𝑥+𝑡

𝛼 𝑑𝑡.

Note that 𝑎𝜇 𝑥
𝑘 = 𝜇𝑥

𝑘 for all k and all x – linking assumption between

single and multi decrement tables.



 
0

1

𝑡 𝑎𝑝 𝑥 𝜇𝑥+𝑡
𝛼 𝑑𝑡 =  

0

1
𝑡 𝑎𝑝 𝑥

𝑡𝑝𝑥
𝛼 𝑡𝑝𝑥

𝛼𝜇𝑥+𝑡
𝛼 𝑑𝑡

and since 𝑡 𝑎𝑝 𝑥 = 𝑡𝑝𝑥
𝛼

𝑡𝑝𝑥
𝛽
×⋯× 𝑡𝑝𝑥

𝜑
, we can write

𝑎𝑞 𝑥
𝛼 =  

0

1

𝑡𝑝𝑥
𝛽
×⋯× 𝑡𝑝𝑥

𝜑
𝑡𝑝𝑥

𝛼𝜇𝑥+𝑡
𝛼 𝑑𝑡.

Under the UDD assumption, 𝑠𝑝𝑥𝜇𝑥+𝑠 = 𝑞𝑥, 0 ≤ 𝑠 ≤ 1, and then

𝑎𝑞 𝑥
𝛼 =  

0

1

1 − 𝑡𝑞𝑥
𝛽

×⋯× 1 − 𝑡𝑞𝑥
𝜑
𝑞𝑥
𝛼 𝑑𝑡

Further simplifications give the following result:

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼  1 −
1

2
𝑞𝑥
𝛽
+ 𝑞𝑥

𝛾
+⋯+ 𝑞𝑥

𝜏 + 𝑞𝑥
𝜑

+  
1

3
𝑞𝑥
𝛽
𝑞𝑥
𝛾
+ 𝑞𝑥

𝛽
𝑞𝑥
𝛿 +⋯+ 𝑞𝑥

𝜏𝑞𝑥
𝜑

−
1

4
𝑞𝑥
𝛽
𝑞𝑥
𝛾
𝑞𝑥
𝛿 +⋯ +⋯



To illustrate, if the population is subject to two decrements 𝛼, 𝛽,

then the equations to use are

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 1 −
1

2
𝑞𝑥
𝛽

and 𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 −

1

2
𝑞𝑥
𝛼

For the three decrements 𝛼, 𝛽, 𝛾 case:

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 1 −
1

2
𝑞𝑥
𝛽
+ 𝑞𝑥

𝛾
+
1

3
𝑞𝑥
𝛽
𝑞𝑥
𝛾

𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 −

1

2
𝑞𝑥
𝛼 + 𝑞𝑥

𝛾
+
1

3
𝑞𝑥
𝛼𝑞𝑥

𝛾

𝑎𝑞 𝑥
𝛾
= 𝑞𝑥

𝛾
1 −

1

2
𝑞𝑥
𝛼 + 𝑞𝑥

𝛽
+
1

3
𝑞𝑥
𝛼𝑞𝑥

𝛽

If we know the independent decrement rates, we can calculate the

dependent decrement rates and construct the multiple decrement

table.



Remember: To apply the correct formulae, we must then pay

attention to the case that is under consideration:

If decrements are uniformly distributed in the multiple decrement

table (Case 1, two decrements), use formulae:

𝑞𝑥
𝛼 =

𝑎𝑞 𝑥
𝛼

1−
1

2
𝑎𝑞 𝑥

𝛽 and  𝑞𝑥
𝛽
=

𝑎𝑞 𝑥
𝛽

1−
1

2
𝑎𝑞 𝑥

𝛼

If each one of the decrements is uniformly distributed in the single

decrement table (Case 2, two decrements) use formulae:

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 1 −
1

2
𝑞𝑥
𝛽

and 𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 −

1

2
𝑞𝑥
𝛼

(If the dependent rates are given, to calculate the independent rates

with more than two decrements it is necessary to solve a set of

simultaneous equations by means of an iterative procedure.)







Remark (based on CT 5 exams):

Case 1: decrements are uniformly distributed in the multiple

decrement table;

Alternative description: dependent decrements are uniformly

distributed over the year of age (because only the dependent

probabilities can be directly calculated from the multiple decrement

table - and we use the formulae above to find the independent ones,

see solutions paper CT5 exam April 2010 – Q9). We already know

that we must use formulae (two decrements)

𝑞𝑥
𝛼 =

𝑎𝑞 𝑥
𝛼

1−
1

2
𝑎𝑞 𝑥

𝛽 and  𝑞𝑥
𝛽
=

𝑎𝑞 𝑥
𝛽

1−
1

2
𝑎𝑞 𝑥

𝛼



Remark (based on CT 5 exams):

Case 2: each one of the decrements is uniformly distributed in the single

decrement table;

Alternative description): independent decrements are uniformly distributed over

the year of age (because only the independent probabilities can be directly

calculated from the single decrement tables - and we use the formulae above to

find the dependent ones, idem). We already know that we must use formulae (two

decrements)

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 1 −
1

2
𝑞𝑥
𝛽

and 𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 −

1

2
𝑞𝑥
𝛼

In some (twisted) exercises the independent rates are given in Case 1 or the

dependent rates are the ones given in Case 2, so that to calculate the

dependent/independent rates it is necessary to solve a set of simultaneous

equations. In Case 2 with more than two decrements it is necessary to use an

iterative procedure to solve the system. Formulae on page 35 of the orange book

refer to Case 2 only (do not use them in Case 1).



CASE 3 (usual in CT5 exams): If we are given 𝑞𝑥
𝛼 and 𝑞𝑥

𝛽
and

one of the two decrements (for instance, 𝛽) is assumed to occur

only at the end of the year, then

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 and 

𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 − 𝑎𝑞 𝑥

𝛼

Example: if there are two decrements, death and withdraw, and

withdraws are allowed only at the end of each policy year, the

probability of death in each year is not influenced by withdraws,

because there aren’t any along the year.



Remark to CASE 3: we have seen that if we are given 𝑞𝑥
𝛼 and 𝑞𝑥

𝛽

and one of the two decrements (for instance, 𝛽) is assumed to occur

only at the end of the year, then

𝑎𝑞 𝑥
𝛼 = 𝑞𝑥

𝛼 and 

𝑎𝑞 𝑥
𝛽
= 𝑞𝑥

𝛽
1 − 𝑎𝑞 𝑥

𝛼 = 𝑞𝑥
𝛽
1 − 𝑞𝑥

𝛼 .

This is different from the case where payment of the surrender

amount is made at the end of the year, independently of when the

withdraw occurred: in this case withdraws actually occur along the

year, influencing the probability of death and thus making 𝑎𝑞 𝑥
𝑑 ≠

𝑞𝑥
𝑑. Policyholders who die after surrendering are not accounted for.

Under such conditions we are really in Case 2.



CASE 4: the forces of decrement are given.

A life insurance company issues a 3-year endowment assurance policy to an

ummarried life.
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6. DISCOUNTED EMERGING COST TECHNIQUES

Dickson et al. – Chaps. 11 and 12 pp. 353-400

Institute and Faculty of Actuaries, 

Subject CM1 

Actuarial Mathematics Core Principles 

Core Reading 

UNIT 6 – PRICING AND RESERVING (3. Profit testing)



6.1 Evaluating expected cash flows

The standard approach to evaluate expected cash flows is to divide the

total duration of a contract into a series of non-overlapping time

periods.

• The length of each time period is chosen so that it is reasonable to

make simple assumptions about the cash flows within each period

e.g. funds earn a constant rate of interest during the period, a

particular cash flow accrues uniformly during the period. These

assumptions allow the expected cash flows during the period to be

evaluated.

• The arithmetic of these calculations is usually most straightforward

when the expected cash flows per contract in force at the start of

the time period are calculated.



• The expected cash flows are used to construct a projected revenue

account (per contract in force at the start of the period) for each

time period. For some contracts e.g. life assurance, there is only

one way in which a contract remains in force and so only one

projected revenue account is needed. For other contracts e.g.

disability insurance, there is more than one way in which the

contract remains in force e.g. policyholder alive and not receiving

disability benefits, policyholder alive and receiving disability

benefits.

• Each in force status generates different cash flows in the

subsequent time period and so separate projected revenue

accounts are needed for each in-force status. The balancing item

in the projected revenue account is the profit emerging at the

end of the time period.



6.2 Deterministic profit testing for traditional life insurance

6.2.1 Required information

In order to calculate the expected cash flows the following

information is needed:

• premiums paid and their times of payment

• expected expenses (from basis) and their times of payment

• contingent benefits payable under the contract e.g. death benefit,

annuity payment, survival benefit for endowment…

• other benefits payable under the contract e.g. surrender values

• other expected cash payments e.g. taxes

• other expected cash receipts

• the reserves required for a contract, usually at the beginning and

end of the time period, calculated using the valuation basis

• the different probabilities of the various events leading to the

payment of particular cash amounts.



Remark 4: In modelling cash flows, we use reserves rather than policy

values. The reserve is the actual amount of money held by the insurer to

meet future liabilities and may be equal to the policy value or of a different

amount.

Since the reserves are amounts that the insurer needs to assign from its

assets to support the policy, it is necessary to include in profit testing the

cost of assigning these amounts.

Usually, though, for traditional insurance, the policy value calculation

will be used to set reserves, perhaps using a conservative basis

Remark 5: Any balance on the expected revenue account during the time

period will be invested, and an assumption about the rate of return on these

funds is needed. This allows the expected investment income during the

period to be calculated and credited at the end of the period.



6.2.2 Illustrations

6.2.2.1 Whole life assurance

The contract is issued to a select life aged x and has a sum assured of

S secured by level annual premiums of P.

The premium basis assumes initial expenses of I and renewal

expenses of e.

The valuation basis requires reserves of 𝑆 𝑡𝑉 for an in-force policy

with sum assured S at policy duration t.

The basis assumes that invested funds earn an effective rate i.

The surrender value basis determines that surrender of amount (𝑆𝑉)𝑡
will be paid to policies surrendered at policy duration t.

The probabilities of events are determined from a multiple decrement

table with decrements of death, d, and surrender, w, having dependent

rates at age x of 𝑎𝑞 𝑥
𝑑 and 𝑎𝑞 𝑥

𝑤 .



Income

Premiums (from data) P

Interest on Reserves 𝑖S 𝑡𝑉

Interest on Balances 𝑃 − 𝑒 𝑖

Expenditure

Expenses (from data) 𝑒

Expected Surrender Value 𝑎𝑞 𝑥 +𝑡
𝑤 (S𝑉)𝑡+1

Expected Death Claims 𝑎𝑞 𝑥 +𝑡
𝑑 𝑆

Transfer to Reserves 𝑎𝑝 𝑥 +𝑡 × S × 𝑡+1𝑉 − S 𝑡𝑉

Profit Balancing item



6.2.2.2 Disability insurance with waiver of premium

The contract is issued to a life aged x and is secured by level annual

premiums of P which are waived during periods of disability.

The premium basis assumes initial expenses of I and renewal expenses of e.

Benefits of S p.a. are paid weekly during periods of disability.

The valuation basis requires reserves of 𝑡𝑉
𝐻 and 𝑡𝑉

𝑆 for policies not

receiving and receiving benefits respectively at policy duration t.

The basis assumes that invested funds earn an effective rate i.

The policy does not acquire a surrender value at any time.

The probabilities of events for disabled lives are determined from a multiple

decrement table with decrements of recovery from sickness, r, and death, d,

having dependent rates at age x of 𝑠𝑞 𝑥
𝑟 and 𝑠𝑞 𝑥

𝑑 .
The dependent rates of dying and falling sick for healthy lives at age x are

ℎ𝑞 𝑥
𝑠 and ℎ𝑞 𝑥

𝑑 respectively.



Income

Interest on reserves 𝑖𝑡𝑉
𝑆

Interest on expenses −𝑖𝑒

Expenditure

Expenses (from data) 𝑒

Expected Sickness 

Payment (ear-end)
𝑆 1 −

1

2
𝑠𝑞 𝑥+𝑡

𝑟 −
1

2
𝑠𝑞 𝑥+𝑡

𝑑 1 + 𝑖
1
2

Transfer to Reserves
𝑠𝑞 𝑥+𝑡

𝑟
𝑡+1𝑉

𝐻 + 1 − 𝑠𝑞 𝑥+𝑡
𝑟 − 𝑠𝑞 𝑥+𝑡

𝑑
𝑡+1𝑉

𝑆

− 𝑡𝑉
𝑆

Profit Balancing item

Then for a life who is sick at the beginning of the (t +1)th policy year (time t)

the projected revenue account is



Income

Premiums (from data) P

Interest on reserves 𝑖 𝑡𝑉
𝐻

Interest on balances 𝑃 − 𝑒 𝑖

Expenditure

Expenses (from data) 𝑒

Expected Sickness Payment

(revalued to year-end)

𝑆

2
ℎ𝑞 𝑥+𝑡

𝑠 1 + 𝑖
1
2

Transfer to Reserves
ℎ𝑞 𝑥+𝑡

𝑠
𝑡+1𝑉

𝑠 + 1 − ℎ𝑞 𝑥+𝑡
𝑠 − ℎ𝑞 𝑥+𝑡

𝑑
𝑡+1𝑉

𝐻

− 𝑡𝑉
𝐻

Profit Balancing item

For a life who is healthy at the beginning of the (t +1)th policy year (time t) the 

projected revenue account is



6.DISCOUNTED EMERGING COST TECHNIQUES (Dickson et al. – Chaps. 11 and 12 pp. 353-

400; Institute and Faculty of Actuaries, Subject CM1 Actuarial Mathematics Core Principles -

Core Reading, UNIT 6 – PRICING AND RESERVING)

6.2 Deterministic profit testing for traditional life insurance

6.2.3 Profit tests for annual premium contracts

6.2.3.1 Profit Vector and Profit Signature

The purpose of a profit test is to identify the profit which the insurer can

claim from the contract at the end of each time period.

The first step in the profit testing of a contract is the construction of the

projected revenue accounts for each policy year.

All cash flows related to the policy are the components of the projected

revenue account.

The calculation of the direct cash flows will also require:

data items about the contract e.g. initial and renewal expenses;

assumptions to form a basis e.g. mortality of policyholders, rate of return

earned.



Def. 6:

The vector of balancing items in the projected revenue accounts

for each policy year is called the profit vector,

(𝑃𝑅𝑂)𝑡= 𝑃𝑅𝑂1, 𝑃𝑅𝑂2, … , 𝑃𝑅𝑂𝑛 ′.

The profit vector gives the expected profit at the end of each

policy year per policy in force at the beginning of that policy year.

For some contracts the expected profit will depend upon the

policyholder’s status at the beginning of the policy year e.g.

receiving or not receiving sickness benefit.

(Other notation: Pr = Pr1, Pr2, … , Pr𝑛 ′).



Remark 7: In many cases,

𝑃𝑟𝑡 = 𝑡−1𝑉 + 𝑃 − 𝑒𝑡 1 + 𝑖 − 𝑆𝑞𝑥+𝑡−1 − 𝑡𝑉 × 𝑝𝑥+𝑡−1,

equivalent to

𝑃𝑟𝑡 = 𝑃 − 𝑒𝑡 1 + 𝑖 + Δ 𝑡𝑉 − 𝑆𝑞𝑥+𝑡−1,

Δ 𝑡𝑉 = 1 + 𝑖 𝑡−1𝑉 − 𝑡𝑉 × 𝑝𝑥+𝑡−1 being the change in reserve (or

cost of increase in reserve) at time t.

This alternative expression reflects the difference between the reserves

and the other cash flows. The incoming and outgoing reserves each year

are not real income and outgo in the same way as premiums, claims and

expenses, but accounting transfers.

Def. 8:

The vector of expected profits per policy issued is called the profit

signature, (𝑃𝑆)𝑡= 𝑃𝑆1, 𝑃𝑆2, … , 𝑃𝑆𝑛 ′. This is obtained by using

transition probabilities from policy duration 0 to policy duration t − 1.

(Other notation: Π = Π1, Π2, … , Π𝑛 ′).



Example:

Life assurance (𝑃𝑆)𝑡= 𝑡−1𝑝𝑥 (𝑃𝑅𝑂)𝑡

Disability assurance (𝑃𝑆)𝑡= 𝑡−1𝑝𝑥
𝐻𝐻(𝑃𝑅𝑂)𝑡

𝐻+𝑡−1𝑝𝑥
𝐻𝑆(𝑃𝑅𝑂)𝑡

𝑆,
where H = healthy (not receiving benefit) and S = sick (receiving benefit).

The profit vector is the vector of expected end-year profits for policies

which are still in force at the start of each year.

The profit signature is the vector of expected end-year profits allowing for

survivorship from the start of the contract.



Remark 9:

o The vector representing the profit signature (𝑃𝑆)𝑡 can be displayed

graphically to illustrate the way in which profits are expected to emerge

over the lifetime of the policy.

o It is difficult to compare this information for different policies when

there is a need to evaluate alternative designs for a product (policy) or to

decide which of several different possible policies is the most profitable.

o Decisions like this are usually made easier by summarising each profit

signature as a single figure.
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6.2.4. Summary measures of profit

Summary measures usually involve determining the present values

of cash flows. This requires an assumption about the discount rate,

called the risk discount rate,

𝑖𝑑 = cost of capital 

+ 

premium to reflect the risks and uncertainties surrounding the cash 

flows to and from the policy

The cost of capital is the rate at which funds can be borrowed, if

this is necessary, or the rate which funds would otherwise earn if

they are to be diverted from alternative investment opportunities.



Def. 10: Net present value (NPV)

This is the present value of the profit signature determined using the

risk discount rate.

Def. 11: Profit margin

This is the expected NPV of the profit signature expressed as a

percentage of the expected net present value of the premium income.

If the premium paid at the beginning of the t-th policy year is 𝑃𝑡,
then

𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 =

 𝑡=1
𝑛 (𝑃𝑆)𝑡

1+𝑖𝑑
𝑡

 𝑡=1
𝑛 𝑡−1𝑝𝑥𝑃𝑡

1 + 𝑖𝑑
𝑡−1



Remark 12:

Other usual profit measures: The IRR and the DPP

The internal rate of return (IRR) is the interest rate j such that the

present value of the expected cash flows is zero. Given a profit signature

(𝑃𝑆)𝑡 , 𝑡 = 1, 2, 3, … , 𝑛, for an n-year contract, the internal rate of return

is j where

 

𝑡=0

𝑛

𝑃𝑆𝑡 𝑣𝑗
𝑡 = 0

The discounted payback period (DPP), also known as the break-even

period is calculated using the risk discount rate 𝑖𝑑 and is the smallest value

of m such that

 

𝑡=0

𝑚

𝑃𝑆𝑡 𝑣𝑖𝑑
𝑡 ≥ 0

The DPP represents the time until the insurer starts to make a profit on the

contract.



6.2.5 Pricing and reserving using profit testing 

If the premiums for a contract together with all the other data items

about the contract are known, then given a basis on which the

projected revenue accounts can be calculated, the expected

profitability of the contract can be evaluated.

Of course, the actual profitability is an unknown quantity until each

respective contract terminates and the actual experience becomes

known.

Example: Q13 CT5 exam - October 2014



SURVIVAL MODELS AND LIFE CONTINGENCIES

LECTURE 28

MASTER IN ACTUARIAL SCIENCE



6.3 Deterministic profit testing for equity-linked insurance

6.3.1 Equity linked insurance

In some modern insurance contracts the main purpose is

investment. These contracts include some life contingent

guarantees, predominantly as a way of distinguishing them from

pure investment products.



• SOURCE: (2015) ACTEX MLC STUDY MANUAL



Such contracts are called unit-linked insurance in the UK and parts

of Europe, variable annuities in the USA (though there is often no

annuity component) and segregated funds in Canada. All fall under

the generic title of equity-linked insurance.

The basic premise of equity-linked insurance is that a policyholder

pays a single or regular premium which, after deducting expenses, is

invested on the policyholder’s behalf. The accumulating premiums

form the policyholder’s fund. Regular management charges are

deducted from the fund by the insurer and paid into the insurer’s

fund to cover expenses and insurance charges.

On survival to the end of the term the benefit may be just the

policyholder’s fund and no more, or there may be a guaranteed

minimum maturity benefit (GMMB).



On death during the term of the policy, the policyholder’s

estate would receive the policyholder’s fund, possibly

with an extra amount – for example, a death benefit of

110% of the policyholder’s fund means an additional

payment of 10% of the policyholder’s fund at the time of

death. There may also be a guaranteed minimum death

benefit (GMDB).



That is:

• Unit-linked assurances (typically whole life or endowment)

have benefits which are directly linked to the value of the

underlying investments.

• Each policyholder receives the value of the units allocated to the

policy. There is no pooling of investments or allocation of the

pooled surplus.

• As each premium is paid, a specified proportion (the “allocation

percentage”) is invested in an investment fund chosen by the

policyholder. The investment fund is divided into units which are

priced continuously.



The value at the date of death or survival of the

cumulative number of units purchased is the sum

assured under the policy.

Sometimes a minimum guaranteed sum assured is

specified in the contract to ensure that the

policyholder avoids any difficulties arising from a

particularly poor investment performance.

In order to price and value unit-linked contracts

details of allocation percentages (usually specified in

the policy) and an assumption about the future

growth in the price of the units purchased are needed.



Important terminology:

Unit account: the total value of the units in respect of the policy at

any time.

Allocation percentage (example): if 90% of the premium is

allocated to units, then 90% of the premium goes to the

policyholder’s fund and the rest goes to the insurer’s fund.

Bid-offer price (spread) (example): If the previous contract is sold

with a bid-offer spread of, say, 5%, then only 95% of the allocated

premium is actually invested in the policyholder’s fund; the

remainder goes to the insurer’s fund.

In short: To the policyholder’s fund goes 95% of 90% that is 85.5%

of the full premium; the remaining 14.5% goes to the insurer’s

fund.



Charges: the company will deduct

money from the unit account on a

periodic basis, in respect of

expenses and the cost of providing

cover in respect of any

contingency.



Equity-linked insurance policies are also usually analysed using

emerging surplus techniques applied last day

(the process of projecting the income and outgo emerging from a

policy, and discounting the results).

The cash flows can be separated into those that are in the

policyholder’s fund and those that are income or outgo for the

insurer.

It is the insurer’s cash flows that are important in pricing and

reserving, but since the insurer’s income and outgo depend on how

much is in the policyholder’s fund, we must first project the cash

flows for the policyholder’s fund and then use these to project the

cash flows for the insurer’s fund.



The projected cash flows for the

insurer’s fund can then be used to

calculate the profitability of the

contract using the profit vector,

profit signature, and perhaps the

NPV, IRR, profit margin and

discounted payback period, in the

same way as before.



That is: the most important thing to bear in mind with unit-linked

contracts is that it is necessary now keep track of two worlds: the

“unit world” and the “cash world”.

Unit world (the unit fund): The policyholder pays premiums to

acquire units, and the eventual benefit is normally denominated in

these units, so it is necessary to keep track of the number of units

bought, how they are growing, and what charges are being

deducted from them.



Cash world (the non-unit fund): the policyholder pays the

insurer in money. So it is necessary to keep track of the cash

not used to buy units. If the policyholder dies there might be a

cash denominated sum insured, so it is necessary to keep

track of the cash outgo on claims (any sum insured payable

on death in excess of the value of the units, or any guaranteed

maturity value in excess of the value of the units, are non-unit

benefits, come from the non-unit fund). The company’s

expenses (underwriting and maintaining expenses and

commissions) are another important cash outgo.



To retain:

• The unit fund is worth only the bid value of the allocated premium –

everything else in the premium goes to the non-unit fund.

• The charges and what they represent are different: the charge for cost

of cover could be different from the actual cost of cover and the

charge for fund management expenses could be different from the

actual fund management expenses.

• The profit or loss to the insurer in each year will be the balance in the

non-unit fund between all sources of income (charges, unallocated

premium, bid/offer spread) and all sources of outgo (expenses, non-

unit benefits).

• The unit fund is what the policyholder sees (unit growth and all

charges are communicated). The non-unit fund is what goes within

the company, and the policyholder does not see anything at this level.



So, the main features of a unit-linked policy are:

Allocated premiums are invested in a fund (or funds) chosen by the policyholder

which purchases a number of units within that fund (funds).

Each investment fund is divided into units, which are priced regularly (usually

daily).

Policyholder receives the value of the units allocated to his/her own policy.

Benefits are directly linked to the value of the underlying investments.

Unallocated premiums are directed to the company’s non-unit fund.

Bid/offer spread is used to help cover expenses and contribute towards profit.

Charges are made from the unit account periodically to cover expenses and

benefits (i.e. fund management charge) and may be varied after notice of change

given.

Unit-linked contracts may offer guaranteed benefits (e.g. minimum death

benefit).

Unit-linked contracts are generally endowment assurance and whole of life

contracts.
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6.3 Deterministic profit testing for equity-linked insurance

…

6.3.2 Pricing and reserving using profit testing

All procedures are similar to the ones studied with reference to

traditional products.



or

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡 = 𝑡𝑉 𝑎𝑝 𝑥+𝑡−1 − 𝑡−1𝑉 1 + 𝑖

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 − 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑜𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = 𝑡𝑉 𝑎𝑝 𝑥+𝑡−1 − 𝑡−1𝑉

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑜𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = 𝑖 × 𝑡−1𝑉
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6.3 Deterministic profit testing for equity-linked insurance

…

6.3.2 Pricing and reserving using profit testing

All procedures are similar to the ones studied with reference to

traditional products.



Zeroising negative cash flows - Calculating the revised reserves

required and the revised profit vector, if negative cash flows

other than in Year 1 are to be eliminated

It is a principle of prudent financial management that once sold and

funded at the outset a product should be self-supporting. This

implies that the profit signature has a single negative value (funds

are provided by the insurance company) at policy duration zero.

This is often termed “a single financing phase at the outset”.



Many products “naturally” produce profit vectors which usually

have a single financing phase. However some products,

particularly those with substantial expected outgo at later policy

durations, can give profit vectors which have more than one

financing phase.

If the contract is to be self funding, then reserves must be

established using the earlier positive cash flows. These reserves

should be sufficient to pay the later expected negative cash flows.



Example:

The in force expected cash flows for a five-year policy under

which no non-unit reserves are held is

(-60.20, -20.50, -17.00, 50.13, 85.75)

Calculate the revised reserves required and the revised profit

vector if negative cash flows other than in Year 1 are to be

eliminated, assuming that the policy is issued to lives aged 55,

mortality is given by

𝑞55+𝑡 = 0.01 + 0.0017𝑡, 𝑡 = 0,1,2,3,4

and reserves earn interest at a rate of 5% per annum.



𝑃𝑅1, 𝑃𝑅2, 𝑃𝑅3, 𝑃𝑅4, 𝑃𝑅5
=(−60.20

𝑡=1,𝑥=56

, −20.50
𝑡=2,𝑥=57

, −17.00
𝑡=3,𝑥=58

, 50.13
𝑡=4,𝑥=59

, 85.75
𝑡=5,𝑥=60

)

Solution:

Negative cash flows are in Years 2 and 3.

If the company can release money held in reserves as follows:

20.50 at the end of Year 2

17.00 at the end of Year 3,

then the negative cash flows will be matched by a positive cash

flow from reserves and the profit vector will show a zero entry

for these two years.



𝑃𝑅1, 𝑃𝑅2, 𝑃𝑅3, 𝑃𝑅4, 𝑃𝑅5
=(−60.20

𝑡=1,𝑥=56

, −20.50
𝑡=2,𝑥=57

, −17.00
𝑡=3,𝑥=58

, 50.13
𝑡=4,𝑥=59

, 85.75
𝑡=5,𝑥=60

)

No reserves are required after Year 3 since there are no losses.

At the start of Year 3, 𝑡 = 2, the required reserve is 2𝑉

2𝑉 1.05 = 17.00 ⇔ 2𝑉 = 16.19.

This means that the total reserve required at the start of Year 2,

𝑡 = 1, is such that

1𝑉 1.05 = 20.50 + 16.19
2𝑉

 𝑝56

∗

⇔ 1𝑉 1.05 = 20.50 +
16.19 1 − 0.0117 ⇔ 1𝑉 = 34.76.

* Note that that the probability that a policy in force at time 1

is still in force at time 2 (𝑥 = 57) is 𝑝56 = 1 − 0.0117.



In general, for the entries 𝑃𝑅𝑡 to be zeroised

𝑡−1𝑉 1 + 𝑖 = −𝑃𝑅𝑡 + 𝑡𝑉 × 𝑝𝑥+𝑡−1



The cash flow at the end of year 1 is then (because the 

reserve is required for survivors only)

𝑃𝑅1
∗ = −60.20 + 0 − 34.76𝑝55 =

= −60.20 − 34.76 1 − 0.01 = −94.61.

The revised profit vector is (-94.61, 0, 0, 50.13, 85.75)

In general,

𝑃𝑅𝑡
∗ = 𝑃𝑅𝑡 + 𝑡−1𝑉 1 + 𝑖 − 𝑡𝑉 × 𝑝𝑥+𝑡−1, 𝑡 = 1,2, … . , 𝑛.



Exercise:

a) Calculate the non-unit reserves required to zeroise

negative cash flows for the in-force expected cash flows

−131.53,−70.11, 25,−20.15, 55.74, 157.91 ,

for a six-year policy taken out by a 50 year old.

Assume that the probability of death during any year is 0.01

and 6% per annum interest.

b) Calculate the revised profit vector.

c) Repeat a) and b), assuming 𝑃𝑅3=15.

(Revised profit vector: −200.34, 0, 0, 0, 55.74, 157.91 )







Summary:

The given examples illustrate that, as already known:

If the premiums for a contract together with all the other data items

about the contract are known, then given a basis on which the

projected revenue accounts can be calculated, the expected

profitability of the contract can be evaluated.

Of course, the actual profitability is an unknown quantity until each

respective contract terminates and the actual experience becomes

known.



Question:

In developing products the expected level of profit will usually

be specified as an objective. How can the features of the product

be set to achieve this objective?

Answer:

Usually, the benefits and terms and conditions for the payment of

these benefits are specified in advance. It follows that only the

level and pattern of premium payments can be varied to meet

the profit objective.



Profit criterion

The objective specified for expected level of profit is termed the

“profit criterion”. Careful choice of a profit criterion is central.

Examples of the profit criterion are:

NPV of Profit = 40% of Initial Sales Commission

Profit Margin = 3% of NPV of expected premium income

For conventional products, the profit test is completed using a

spread sheet or similar software, and the premiums are varied

until the required “target” i.e. value of NPV of profit, level of

profit margin, is achieved. The premium or price of the product

has been determined using a profit test.



Insurers must choose a variety of different assumptions in

order to determine how quickly the expected future profit

changes on varying any particular assumption. Such

alternative bases represent sensitivity test assumptions.

The “sensitivity tests” can give the insurer an understanding

of how profits might be increased as well as how they might

be endangered. The results of these tests may indicate ways in

which a product might be re-designed to minimise changes in

expected profits. Any redesign would need to be profit tested

itself, so this process can be iterative.



In the case of unit-linked contracts there is the additional

possibility of varying the charges and typically this would be the

approach taken in pricing such contracts to achieve the profit

objective.

For unit-linked products, the management charges are varied to try

to achieve an acceptable charging structure (in comparison with

other products in the market) which satisfies the profit criterion.

The sensitivity of this profit to variation in the key features of the

product design e.g. benefits offered, and the assumptions made in

determining the expected cash flows e.g. mortality rates, rate of

return on investments are usually investigated.



This is done by keeping the premium or charging structure fixed

and determining the change in the profit criterion for realistic

variation in the characteristics of the product and the assumptions

made in the basis. The objective is to design a product which is

robust (i.e. profit criterion changes as little as possible) to possible

changes in the data and the assumptions used in the profit test.
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6.4. Stochastic profit testing

Past Exam Questions

1. Explain why a stochastic profit test may reflect reality in a more adequate

way than deterministic profit test, for equity-linked insurance.

2. “Financial guarantees are risky and can be expensive.” Discuss the use of

risk measures to calculate reserves for contracts with financial guarantees.

3. Explain why a stochastic approach would be more (less) appropriate to

answer Question 10 (Calculate the level premium so that the sum of the

discounted annual emerging surpluses (NPVFP) is 1000 for a 3-year

endowment insurance) and Question 11 (Calculate the profit margin on a

three-year unit-linked endowment assurance contract).



4. Describe how to use Monte Carlo simulation to perform stochastic 

profit testing.

5. A Monte Carlo simulation has been performed and a set of 10 000

independent values were sampled from the distribution of the NPVFP, for a

certain equity linked life product. From this sample, estimates of the mean

m, standard deviation s and other results are shown below.

Determine a 95% confidence interval for E[NPV] and write a brief report

with the main conclusions it is possible to derive from the given

information

m
692.50

s
514.05

Minimum
-1223.68

0.01 Quantile
-987.40



6. Explain why, for a given value of α, the CTE𝛼 reserve is generally

more conservative than the 𝑄𝛼 quantile reserve.

7. Discuss briefly this statement: «in developing products the expected

level of profit will usually be specified as an objective, termed the ‘profit

criterion’. Careful choice of a profit criterion is central».

8. Some products give profit signatures that have more than one

financing phase. Explain why the later negative cash flows should be

‘zeroised’ and describe briefly this ‘algorithm’.

9. Comment on the following statement: “in profit testing the ‘sensitivity

tests’ can give the insurer an understanding of how profits might be

increased as well as how they might be endangered”.



6.4. Stochastic profit testing

Using a deterministic profit test does not reflect the reality of the

situation adequately in most cases, because the deterministic test,

approximately at least, only projects the median result and this may not

be enough.

For traditional (conventional) insurance policies it is often assumed that

the demographic uncertainty dominates the investment uncertainty –

which may be a reasonable assumption if the underlying assets are

invested in low risk fixed interest securities of appropriate duration.



The uncertainty involved in equity-linked insurance is very different.

The mortality element is assumed diversifiable and is not the major

factor. The uncertainty in the investment performance is a far more

important element, and it is not diversifiable.

Example:

Selling 1000 equity-linked contracts with GMMBs (guaranteed

minimum maturity benefits) to identical lives, for instance, is almost the

same as issuing one big contract.

When one policyholder’s fund dips in value, then all dip, increasing the

chance that the GMMB will cost the insurer money for every contract.



Profit measures, like the EPV of future profit, do not contain any

information about the uncertainty from investment returns.

The profit measure for an equity-linked contract is modelled more

appropriately as a random variable rather than a single number.

This is achieved by stochastic profit testing, where a sequence of random

variables 𝑅1, 𝑅2, , … , 𝑅𝑇 is introduced, 𝑅𝑡 representing the accumulation

at time t of a unit amount invested in an equity fund at time 𝑡 − 1, so that

𝑅𝑡 − 1 is the rate of interest earned in the year.

A common assumption for returns on equity portfolios is the independent

lognormal assumption, very important in financial modelling, where

𝑅1, 𝑅2, , … , 𝑅𝑇 are assumed to be mutually independent, and each 𝑅𝑡 is

assumed to have a lognormal distribution with parameters 𝜇𝑡 and 𝜎2;



The calculus for stochastic profit testing is the same done in the

deterministic profit testing. The difference is that in the

stochastic profit testing, the deterministic investment

scenarios are replaced with stochastic scenarios. The most

common practical way to do this is with Monte Carlo

simulation.



6.4.1 Monte Carlo simulation

Using Monte Carlo simulation, a large number of outcomes

𝑟1, 𝑟2, , … , 𝑟𝑇 for the investment return on the policyholder’s fund is

generated.

The simulated returns are used in place of the constant investment

return assumption in the deterministic case.

The profit test proceeds exactly as described in the deterministic

approach, except that the deterministic test is repeated for each

simulated investment return outcome.

What is the purpose?



The purpose is to generate a random sample of outcomes for the

contract, which can be used to determine the probability

distribution for each profit measure that might be chosen to assess

the product.

That is: to measure the effect of the uncertainty in rates of return, a

large number N of sets of rates of return 𝑟1, 𝑟2, , … , 𝑟𝑇 is generated

and for each set a deterministic profit test is carried.



Illustration with the NPV (modelled as a random variable):

Let 𝑁𝑃𝑉𝑖 denote the net present value calculated from the i-th

simulation, 𝑖 = 1, 2, . . . , 𝑁. {𝑁𝑃𝑉𝑖}𝑖=1
𝑁 is a set of 𝑁 independent

values sampled from the distribution of NPV. From this sample it is

possible:

To estimate the mean 𝑚 , standard deviation 𝑠 and percentiles of

the distribution.

To count the number of simulations for which the 𝑁𝑃𝑉𝑖 is negative.

To count the number of simulations for which the final fund value is

less than the guaranteed benefits, so that there is a liability.

…



It is important whenever reporting summary results from a

stochastic simulation to give some measure of the variability of the

results, such as a standard deviation or a confidence interval.

Since N is large, the central limit theorem allows to say that a 95%

confidence interval for e[npv] is given by

𝑚 − 1.96
𝑠

𝑁
, 𝑚 + 1.96

𝑠

𝑁
.



6.4.2 Stochastic pricing

Recall that:

1. The equivalence principle premium is defined such that the

expected value of the present value of the future loss at the issue

of the policy is zero.

2. In fact, the expectation is usually taken over the future lifetime

uncertainty (given fixed values for the mortality rates), not the

uncertainty in investment returns or non-diversifiable mortality

risk.

3. This is an example of an expected value premium principle,

where premiums are set considering only the expected value of

future loss, not any other characteristics of the loss distribution.



Incorporating a guarantee may add significant risk to a contract and

this only becomes clear when modeled stochastically. The risk

cannot be quantified deterministically. Using the mean of the

stochastic output is generally not adequate as it fails to protect the

insurer against significant non-diversifiable risk of loss.

For this reason it is not advisable to use the equivalence premium

principle when there is significant non-diversifiable risk. Instead we

can use stochastic simulation with different premium principles.

The quantile premium principle is similar to the portfolio percentile

premium principle. It is a principle based on the requirement that the

policy should generate a profit with a given probability and can be

extended to the pricing of equity-linked policies.



Often it is not possible to determine a premium analytically for

equity-linked contracts with certain requirements about profit.

However, one can investigate the effects of changing the

structure of the policy. For instance:

(1) Increasing the premium.

(2) Increasing the annual management charge.

(3) Increasing the expense deductions from the premiums.

(4) Decreasing the GMMB.



(1) Sometimes, increasing the premium makes little difference in

terms of the chosen profit criterion. The premium for an equity-

linked contract is not like a premium for a traditional contract,

since most of it is unavailable to the insurer. The role of the

premium in a traditional policy – to compensate the insurer for

the risk coverage offered – is taken in equity-linked insurance

by the management charge on the policyholder’s funds and any

loading taken from the premium.



(2,3)Increasing the management charge or the expense loadings does

increase the expected net present value but is usually not enough

to decrease significantly the probability of a loss.

(4) The one change more effective is reducing the level of the

maturity guarantee. This is a demonstration of the important

principle that risk management begins with the design of the

benefits.



6.4.3 Stochastic reserving (Risk Measures)

Recall that:

1. A profit test can be used to determine the reserves for a

conventional life assurance.

2. If the contract is to be self funding, then reserves must be

established using the earlier positive cash flows. These reserves

should be sufficient to pay the later expected negative cash

flows.

3. This requirement is exactly analogous to the need to establish

reserves in the non-unit fund for a unit-linked assurance.



Risk Measures to Calculate Reserves

Calculating reserves for policies with significant non-diversifiable

risk requires a methodology that takes account of more than just the

expected value of the loss distribution. Such methodologies are

called risk measures.

A risk measure is a functional that is applied to a random loss

to give a reserve value that reflects the riskiness of the loss.

There are two common risk measures used to calculate reserves for

non-diversifiable risks: the quantile reserve (Value at Risk) and the

conditional tail expectation reserve.



6.4.3.1 Quantile Reserve

A quantile reserve is defined in terms of a parameter 𝛼, 0 ≤
𝛼 ≤ 1: The quantile reserve with parameter 𝛼 represents the

amount 𝑄𝛼 which, with probability 𝛼, will not be exceeded by

the future loss random variable, 𝐿.

If 𝐿 has a continuous distribution function 𝐹𝛼, the α-quantile

reserve is 𝑄𝛼: 𝑃𝑟 𝐿 ≤ 𝑄𝛼 = 𝛼 ⟺ 𝑄𝛼 = 𝐹𝐿
−1 𝛼 .



6.4.3.2 Conditional Tail Expectation Reserve

The Conditional Tail Expectation (or CTE) was developed to

address some of the problems associated with the quantile risk

measure (the quantile reserve assesses the ‘worst case’ loss but

does not take into consideration what the loss will be).

It was proposed more or less simultaneously by several

researchers, so it has a number of different names, including Tail

Value at Risk (or Tail-VaR), Tail Conditional Expectation (or

TCE) and Expected Shortfall.



The CTE𝛼 is the expected loss given that the loss falls in the worst

1−α part of the loss distribution, L. The worst 1−α part of the loss

distribution is the part above the α-quantile, 𝑄𝛼. then

CTE𝛼 = 𝐸 [𝐿|𝐿 > 𝑄𝛼] .

As the CTE𝛼 is the mean loss given that the loss lies above the

VAR at level α, then CTE𝛼 ≥ 𝑄𝛼 , and usually strictly greater: for a

given value of α, the CTE𝛼 reserve is generally more conservative

than the 𝑄𝛼 quantile reserve.



Financial guarantees are risky and can be expensive.

Several major life insurance companies have found their

solvency at risk through issuing guarantees that were not

adequately understood at the policy design stage, and were

not adequately reserved for thereafter.

The method of covering that risk by holding a large

quantile or CTE reserve reduces the risk, but at great cost

in terms of tying up amounts of capital that are huge in

terms of the contract overall.
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7. Single figure indices to summarise and compare mortality

levels (CT5 CR-15: Mortality, selection and standardisation)

7.1 Mortality, selection and standardisation

In addition to variation by age and sex, mortality and morbidity

rates are observed to vary:

• between geographical areas e.g. countries, regions of a country,

urban and rural areas

• by social class e.g. manual and non-manual workers

• over time e.g. mortality rates usually decrease over time

None of these categories e.g. geographical location and time,

provide a direct (causal) explanation of the observed differences.

Rather they are proxies for the real factors which cause the

observed differences.



Such factors are:

• Occupation

• Nutrition

• Housing

• Climate

• Education

• Genetics



It is rare that observed differences in mortality can all be ascribed to a

single factor.

It is difficult to separate the effects of different factors. For instance,

mortality rates of those living in sub-standard housing are (usually) higher

than those of people living in good quality housing.

However, those living in sub-standard housing usually have less well paid

occupations and lower educational attainment than those living in good

quality housing.

Part or all of the observed difference may be due to these other differences

and not to housing differences.

Lower educational attainment ⟹ less well paid occupations ⟹ sub-

standard housing ⟹ higher mortality rates



The source of all the following examples and exercises is CT5 CR-15:

Mortality, selection and standardisation.



How decrements can have a selective effect

One way in which lives in a population can be grouped is by the operation of a

decrement (other than death) e.g. retiring on ill-health grounds, getting married,

migrating to a new country. Those who do and do not experience this selective

decrement will experience different levels of the primary decrement of interest,

often mortality or morbidity.

Those getting married usually experience lighter mortality and morbidity than

those of the same age who do not get married. Marriage is said to have a

selective effect in respect of mortality and morbidity.



Mortality convergence

The variations in mortality are noted most strongly at working ages. These

variations can be large and material for insurance companies.

The variation has been seen to continue after retirement but reduces at the

very highest ages, although the evidence is disputed. This convergence of

mortality between subgroups at higher ages is referred to as mortality

convergence,

Detailed analysis of mortality convergence is complicated by the low volumes

of data at the highest ages.



7.2 Single figure indices

Summary (single figure) mortality indices can be used:

To quantify and compare the mortality experience of different

populations;

To monitor the progress over time of a population’s mortality.

The main advantage of the use of single figure indices is their

simplicity for summary and comparison, compared to the use of a

set of age specific rates.



All summary measures are weighted averages of the age-specific

mortality rates or some function of these age-specific rates.

Some indices are particularly designed for comparison with the

mortality in a standard population.

Of course, specific features of the underlying mortality rates may

be hidden and sometimes extensive data may be required, limiting

the situations in which they can be used.



7.2.1 Crude mortality (death) rate

The crude (non-standardised) death rate for a particular population

is the total number of deaths observed during the period divided by

the total central exposed to risk for the same period. Or the ratio of

the total number of deaths in a category to the total exposed to risk

in the same category.

Crude mortality rate =
 𝑥 𝐸𝑥,𝑡

𝑐 𝑚𝑥,𝑡

 𝑥𝐸𝑥,𝑡
𝑐 =

Actual deaths

Total exposed to risk
,

𝐸𝑥,𝑡
𝑐 = central exposed to risk in population being studied between

ages 𝑥 and 𝑥 + 𝑡
𝑚𝑥,𝑡 = central rate of mortality in population being studied between

ages 𝑥 and 𝑥 + 𝑡



[𝑞𝑥 is the initial rate of mortality. It measures the number of deaths

𝑑𝑥 divided by the number of lives alive at age x, 𝑙𝑥. The problem is

that it assumes that there are 𝑙𝑥 persons living between ages x and

x+1; obviously lives will die during the year of age, and will not be

exposed to risk for the whole year.

𝑚𝑥 is calculated dividing 𝑑𝑥 by the expected number of lives living

between ages x and x+1, equal to  0
1
𝑙𝑥+𝑡 𝑑𝑡.

𝑞𝑥 is the probability a life now aged exactly x dies within the next

year.

𝑚𝑥 is the probability a life aged anywhere between ages x and x+1

dies before attaining age x+1.]





The crude (non-standardised) death rate is easy to calculate,

but does not take into account the age or sex structure of the

population and gives sometimes misleading results. It is

primarily reflecting the average age of the population.

The following three (standardised) indices all endeavour to

remove the effect of differing age structures between

populations.



7.2.2 Directly Standardised Mortality Rate (DSMR)

The DSMR is defined as the following quotient

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑡ℎ𝑎𝑡 𝑤𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,
ℎ𝑎𝑑 𝑡ℎ𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑡𝑜 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

DSMR =
 𝑥

𝑠𝐸𝑥,𝑡
𝑐 𝑚𝑥,𝑡

 𝑥
𝑠𝐸𝑥,𝑡

𝑐 ,

𝑠𝐸𝑥,𝑡
𝑐 = central exposed to risk for a standard population between 

ages 𝑥 and  𝑥 + 𝑡

The lower the DSMR, the lighter is the mortality of the particular 

population, compared to the standard mortality.



Standard Population

Age Exposed Deaths

20 40 000 80

40 35 000 140

60 25 000 200

Total 100 000 420

https://portuguesefood.pt/recipe/acorda-

alentejana/ 

https://portuguesefood.pt/recipe/acorda-alentejana/




The Directly Standardised Mortality Rate is the mortality rate of

a category weighted according to a standard population; that is to

say the DSMR takes account of the population structure. Still it is

most heavily influenced by the older ages, because the

weightings used are based on mortality rates, which will be

greatest at the older ages.

It is more complicated to calculate than the crude rate.

Populations may need to be standardised by age, sex or some

other risk factor, e.g. occupation.









7.2.3 Indirectly standardised mortality rate (ISMR)

The ISMR is a good approximation to the DSMR. It is defined as 

the following quotient 

𝐶𝑟𝑢𝑑𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑎𝑡ℎ𝑠 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑒𝑎𝑡ℎ𝑠 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

ISMR =

 𝑥
𝑠𝐸𝑥,𝑡

𝑐 𝑠𝑚𝑥,𝑡

 𝑥
𝑠𝐸𝑥,𝑡

𝑐

 𝑥 𝐸𝑥,𝑡
𝑐 𝑠𝑚𝑥,𝑡

 𝑥 𝐸𝑥,𝑡
𝑐 𝑚𝑥,𝑡

,

𝑠𝑚𝑥,𝑡 = central rate of mortality in standard population between 

ages 𝑥 and  𝑥 + 𝑡



ISMR =

 𝑥
𝑠𝐸𝑥,𝑡

𝑐 𝑠𝑚𝑥,𝑡

 𝑥
𝑠𝐸𝑥,𝑡

𝑐

 𝑥 𝐸𝑥,𝑡
𝑐 𝑠𝑚𝑥,𝑡

 𝑥 𝐸𝑥,𝑡
𝑐 𝑚𝑥,𝑡

can be decomposed as

ISMR = 𝐹 × 𝐶𝑟𝑢𝑑𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,

where

F =

 𝑥
𝑠𝐸𝑥,𝑡

𝑐 𝑠𝑚𝑥,𝑡

 𝑥
𝑠𝐸𝑥,𝑡
𝑐

 𝑥 𝐸𝑥,𝑡
𝑐 𝑠𝑚𝑥,𝑡

 𝑥 𝐸𝑥,𝑡
𝑐

=
Crude mortality rate for standard population

Crude mortality rate for population, using standardmortality

is the Area Comparability Factor.









F provides information about the structure of the population being

studied, relative to the standard population.

A value of F less than 1 indicates that the population structure is more

heavily weighted towards individuals who experience heavier mortality

(older ages or males).

In short, Indirectly Standardised Mortality Rate is an approximation to

the Directly Standardised Mortality Rate being the crude rate for the

standard population multiplied by the ratio of actual to expected deaths

for the region. This is the same as the crude rate for the local population

multiplied by the Area Comparability Factor.

The ISMR does not require local records of births to be analysed by age

grouping, which is an advantage over the DSMR. Very often it is

possible to compute both and they are similar, so the approximation is

usually acceptable.



Further conclusions:

• if DSMR and ISMR and crude rate for the standard population

> crude rate for the studied population

then the reason for the low crude rate compared to the standard

population is due to population distribution by age.

• if crude rate for the standard population > DSMR and ISMR

then crude rate for the studied population is lower, even allowing

for the age distribution.



Summary:

Crude mortality rate: the ratio of the total number of deaths in a

category to the total exposed to risk in the same category.

Directly standardised mortality rate: the mortality rate of a category

weighted according to a standard population.

Indirectly standardised mortality rate: an approximation to the

directly standardised mortality rate being the crude rate for the

standard population multiplied by the ratio of actual to expected

deaths.



7.2.4 5 Standardised mortality ratio (SMR)

The SMR is defined as

The number of deaths observed in the particular population

The number of deaths that would have occurred in the particular population
had the mortality of the standard population applied

or SMR =
Actual deaths in population

Expected deaths in population
=

 𝑥 𝐸𝑥,𝑡
𝑐 𝑚𝑥,𝑡

 𝑥 𝐸𝑥,𝑡
𝑐 𝑠𝑚𝑥,𝑡

The SMR compares the indirectly standardized mortality rate with the

crude mortality rate in the standard population.

Values less than 1 indicate populations with mortality lighter than that

in the standard population.



Question 15.21

Calculate the standardised mortality ratio for Oldsville




